

JEPPIAAR INSTITUTE OF TECHNOLOGY

“Self-Belief | Self Discipline | Self Respect”

DEPARTMENT

OF

ELECTRONICS AND COMMUNICATION ENGINEERING

LECTURE NOTES

EC8552 – COMPUTER ARCHITECTURE AND ORGANIZATION

(Regulation 2017)

Year/Semester: III / V ECE

2021 – 2022

Prepared by

Mr. N. Prabhakaran

Associate Professor / IT

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

UNIT IV
PARALLELISM
Parallel processing challenges – Flynn‘s classification – SISD, MIMD, SIMD, SPMD, and Vector
Architectures - Hardware multithreading – Multi-core processors and other Shared Memory
Multiprocessors - Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers
and other Message-Passing Multiprocessors.

PARALLEL PROCESSING CHALLENGES:

 It is difficult to write software that uses multiple processors to complete one task

is faster.

 Parallel processing will increase the performance of processor and it will reduce

the utilization time to execute a task.
 By obtaining the parallel processing is not an easy task.

 The difficulty is not in hardware side it is in software side. We can understand that it

is difficult to write parallel processing programs that are fast, especially as the number

of processor increases.
Advantage:

1. To get better performance
2. It produce better energy efficiency

Performance:
If we are running a program on two different desktop computers, we will say that the

faster one is the desktop computer that gets the job done first.

In some situation we cannot get parallel processing as faster than sequential programs.

The reasons are,

1. Scheduling: It is done to load balance and share system resources effectively

and achieve a target. It can be done by the following ways,
1. Long term
2. Medium Term
3. Short Term
4. Dispatcher

2. Portioning the work into parallel pieces: Divide the task equally to all

the processor.
3. Load Balancing: Work load distribute evenly and amount of execution time is

also equal.
4. Time to Synchronize: Here the throughput must be high.
5. Overhead for Communication

Strong scaling: Speedup achieved on a multiprocessor without increasing the size of the

problem.

Weak scaling: Speedup achieved on a multiprocessor while increasing the size of the

problem proportionally to the increase in the number of processors.

1

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Speed-up Challenge

Suppose you want to achieve a speed-up of 90 times faster with 100 processors.

What percentage of the original computation can be sequential? [Dec’17]

2

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
Example: 2

Speed-up Challenge: Balancing Load

Example:3

To achieve the speed-up of 20.5 on the previous larger problem with 40 processors, we

assumed the load was perfectly balanced. That is, each of the 40 processors had 2.5% of

the work to do. Instead, show the impact on speed-up if one processor’s load is higher

than all the rest. Calculate at twice the load (5%) and five times the load (12.5%) for that

hardest working processor. How well utilized are the rest of the processors?

3

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
Solution:

PROCESSOR ORGANAIZATION [FLYNN’S

CLASSIFICATION] SISD

 Single Instruction stream, Single Data stream.

 Example of SISD is uniprocessor.
 It has a single control unit and producing a single stream of instruction.
 It has one processing unit and the processing has more than one functional unit

these are under the supervision of one control unit.

 It has one memory unit.

SIMD

 It has one instruction and multiple data stream.
 It has a single control unit and producing a single stream of instruction and multi

stream of data.
 It has more than one processing unit and each processing unit has its own associative

data memory unit.
 In this organization, multiple processing elements work under the control of a

single control unit.
 A single machine instruction controls the simultaneous execution of a number

of processing element.

 Each instruction to be executed on different sets of data by different

processor. The same instruction is applied to many data streams, as in a vector

processor. All the processing elements of this organization receive the same
instruction

broadcast from the CU.

 Main memory can also be divided into modules for generating multiple data

streams acting as a distributed memory as shown in figure.

 Therefore, all the processing elements simultaneously execute the same instruction

4

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

and are said to be 'lock-stepped' together.

 Each processor takes the data from its own memory and hence it has on distinct data

streams.

 Every processor must be allowed to complete its instruction before the next instruction is

taken for execution. Thus, the execution of instructions is synchronous.
 Example of SIMD is Vector Processor and Array Processor.

5

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Advantage of SIMD:

 The original motivation behind SIMD was to amortize the cost of the control unit

over dozens of execution units.
 Another advantage is the reduced instruction bandwidth and space.

 SIMD needs only one copy of the code that is being simultaneously executed while

message-passing MIMDs may need a copy in every processor, and shared memory

MIMD will need multiple instruction caches.

 SIMD works best when dealing with arrays in for loops because parallelism achieved

by performing the same operation on independent data.

 SIMD is at its weakest in case or switch statements, where each execution unit must

perform a different operation on its data, depending on what data it has. Execution units

with the wrong data must be disabled so that units with proper data may continue.

MISD

 Multiple Instruction and Single Data stream (MISD)

 In this organization, multiple processing elements are organized under the control of

multiple control units.

 Each control unit is handling one instruction stream and processed through

its corresponding processing element.
 But each processing element is processing only a single data stream at a time.

 Therefore, for handling multiple instruction streams and single data stream, multiple

control units and multiple processing elements are organized in this classification.

 All processing elements are interacting with the common shared memory for

the organization of single data stream as shown in figure.

 The only known example of a computer capable of MISD operation is the

C.mmp built by Carnegie-Mellon University.

6

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

MIMD

 Multiple Instruction streams and Multiple Data streams (MIMD). In this organization,

multiple processing elements and multiple control units are organized.

 Compared to MISD the difference is that now in this organization multiple instruction

streams operate on multiple data streams.

 Therefore, for handling multiple instruction streams, multiple control units and

multiple processing elements are organized such that multiple processing elements are

handling multiple data streams from the main memory as shown in figure.

 The processors work on their own data with their own instructions. Tasks executed by

different processors can start or finish at different times.
 They are not lock-stepped, as in SIMD computers, but run asynchronously.

 This classification actually recognizes the parallel computer. That means in the real

sense MIMD organization is said to be a Parallel computer.

SIMD-VECTOR ARCHITECTURE [SPMD]

 SIMD is called vector architecture.

7

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 It is also a great match to problems with lots of data-level parallelism.i.e. Parallelism

achieved by performing the same operation on independent data.

 Rather than having 64 ALUs perform 64 additions simultaneously, like the old array

processors.
 The vector architectures pipelined the ALU to get good performance at lower cost.

 The basic idea of vector architecture is to collect data elements from memory, put

them in order into a large set of registers, operate on them sequentially in registers

using pipelined execution units, and then write the results back to memory.

 A key feature of vector architectures is then a set of vector registers. Thus, vector

architecture might have 32 vector registers, each with 64-bit elements.

Comparing Vector to Conventional Code

 Suppose we extend the MIPS instruction set architecture with vector instructions and

vector registers. Vector operations use the same names as MIPS operations, but with

the letter V appended.

 For example, addv.d adds two double-precision vectors. The vector instructions take
as their input either a pair of vector registers (addv.d) or a vector register and a scalar

register (addvs.d).
 The value in the scalar register is used as the input for all operations.
 The operation addvs.d will add the contents of a scalar register to each element in

a vector register.
 The names lv and sv denote vector load and vector store, and they load or store

an entire vector of double-precision data.
 One operand is the vector register to be loaded or stored; the other operand, which is

a MIPS general-purpose register, is the starting address of the vector in memory.
 The conventional MIPS code versus the vector MIPS code for

 Where X and Y are vectors of 64 double precision floating-point numbers,
initially resident in memory, and a is a scalar double precision variable.

 This example is the so-called DAXPY loop that forms the inner loop of the
DAXPY stands for double precision a × X plus Y.).

 Assume that the starting addresses of X and Y are in $s0 and $s1, respectively.
Here is the conventional MIPS code for DAXPY:

Here is the vector MIPS code for DAXPY:

8

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

9

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 The most dramatic is that the vector processor greatly reduces the dynamic instruction
bandwidth, executing only 6 instructions versus almost 600 for the traditional MIPS

architecture.
 This reduction occurs both because the vector operations work on 64 elements at a

time and because the overhead instructions that constitute nearly half the loop on

MIPS are not present in the vector code.

 Vector Scalar

 The instruction fetch and decode bandwidth The instruction fetch and decode bandwidth

 needed is dramatically reduced. needed is not reduced.

 The compiler or programmer indicates that the The compiler or programmer indicates that
 computation of each result in the vector is the computation of each result is not

 independent of the computation of other independent of the computation of other

 results in the same vector, results.

 Hardware does not have to check for data Hardware to check for data hazards within a

 hazards within a vector instruction. vector instruction.

 Vector architectures and compilers have a Not easy to perform this operation

 reputation of making it much easier than

 when using MIMD multiprocessors to write

 efficient applications when they contain data-

 level parallelism.

 Hardware need only check for data hazards Hardware need only check for data hazards

 between two vector instructions once per for every element within the array.
 vector operand, not once for every element

 within the vectors.

 Save energy because of reduced checking It does not save energy because it has more

 number of checking.

 The cost of the latency to main memory is The cost of the latency to main memory is

 seen only once for the entire vector, rather seen for each word of the scalar.
 than once for each word of the vector.

 Efficient use of memory bandwidth and No efficient use of memory bandwidth and

 instruction bandwidth. instruction bandwidth.

 Entire loop behavior is predetermined Entire loop behavior is not a predetermined

Vector Versus Multimedia Extensions
 Like multimedia extensions found in the x86 AVX instructions, a vector instruction

specifies multiple operations.
 However, multimedia extensions typically specify a few operations while vector

specifies dozens of operations.
 The number of elements in a vector operation is not in the opcode but in a separate

register.
 This distinction means different versions of the vector architecture can be

implemented with a different number of elements just by changing the contents of that

register and hence retain binary compatibility.
 In contrast, a new large set of opcodes is added each time the vector length changes in the

multimedia extension architecture of the x86: MMX, SSE, SSE2, AVX, AVX2 …
 Also unlike multimedia extensions, the data transfers need not be contiguous.

10

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 Hardware finds the addresses of the items to be loaded in a vector register.

 Indexed accesses are also called gatherscatter, in that indexed loads gather elements
from main memory into contiguous vector elements and indexed stores scatter vector

elements across main memory.
 The following figure illustrates how to improve vector performance by using parallel

pipelines to execute a vector add instruction.
 The figure using multiple functional units to improve the performance of a single

vector add instruction, C = A + B.
 The vector processor (a) on the left has a single add pipeline and can complete one

addition per cycle.
 The vector processor (b) on the right has four add pipelines or lanes and can complete

four additions per cycle.

Vector Lane
 One or more vector functional units and a portion of the vector register file. Inspired

by lanes on highways that increase traffic speed, multiple lanes execute vector

operations simultaneously.
 Figure shows the structure of a four-lane vector unit. Thus, going to four lanes from one

lane reduces the number of clocks per vector instruction by roughly a factor of four.
 The figure shows three vector functional units: an FP add, an FP multiply, and a load-

store unit.
 For multiple lanes to be advantageous, both the applications and the architecture must

support long vectors.
 The elements within a single vector add instructions are interleaved across the four

lanes.
 The vector-register storage is divided across the lanes, with each lane holding every

fourth element of each vector register.
 Each of the vector arithmetic units contains four execution pipelines, one per lane,

which acts in concert to complete a single vector instruction.

11

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Figure: Structure of a vector unit containing four lanes.
HARDWARE MULTITHREADING

Multithreading

 A mechanism by which the instruction streams is divided into several smaller

streams (threads) and can be executed in parallel is called multithreading.

Hardware Multithreading

 Increasing utilization of a processor by switching to another thread when one thread

is stalled is known as hardware multithreading.

Thread

 A thread includes the program counter, the register state, and the stack. It is a

lightweight process; whereas threads commonly share a single address space,

processes don’t.

Thread Switch

 The act of switching processor control from one thread to another within the same

process. It is much less costly than a processor switch.

Process

 A process includes one or more threads, the address space, and the operating system

state. Hence, a process switch usually invokes the operating system, but not a thread

switch.

What are the approaches to hardware multithreading?

There are two main approaches to hardware multithreading.

1. Fine-grained Multithreading
2. Coarse-grained Multithreading

Fine-grained Multithreading
 A version of hardware multithreading that implies switching between threads after

every instruction resulting in interleaved execution of multiple threads. It switches

from one thread to another at each clock cycle.
 This interleaving is often done in a round-robin fashion, skipping any threads that are

stalled at that clock cycle.

12

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 To make fine-grained multithreading practical, the processor must be able to

switch threads on every clock cycle.

Advantage

 Vertical waste is eliminated.
 Pipeline hazards cannot arise.
 Zero switching overhead

 Ability to hide latency within a thread i.e., it can hide the throughput losses that

arise from both short and long stalls.
 Instructions from other threads can be executed when one thread stalls.
 High execution efficiency
 Potentially less complex than alternative high performance processors.

Disadvantage
 Clock cycles are wasted if a thread has little operation to execute.
 Needs a lot of threads to execute.
 It is expensive than coarse-grained multithreading.

 It slows down the execution of the individual threads, since a thread that is ready to

execute without stalls will be delayed by instructions from other threads.

Coarse-grained Multithreading

 Coarse-grained multithreading was invented as an alternative to fine-grained

multithreading.

 A version of hardware multithreading that implies switching between threads only

after significant events, such as a last-level cache miss.

 This change relieves the need to have thread switching be extremely fast and is much

less likely to slow down the execution of an individual thread, since instructions from

other threads will only be issued when a thread encounters a costly stall.

Advantage

 To have very fast thread switching.
 Doesn’t slow down thread.

Disadvantage
 It is hard to overcome throughput losses from shorter stalls, due to pipeline start-

up costs.

 Since CPU issues instructions from 1 thread, when a stall occurs, the pipeline must

be emptied.
 New thread must fill pipeline before instructions can complete.

 Due to this start-up overhead, coarse-grained multithreading is much more useful for

reducing the penalty of high-cost stalls, where pipeline refill is negligible compared to

the stall time.

Simultaneous multithreading (SMT)

 It is a variation on hardware multithreading that uses the resources of a multiple-issue,

dynamically scheduled pipelined processor to exploit thread-level parallelism at the

same time it exploits instruction level parallelism.

 The key insight that motivates SMT is that multiple-issue processors often have more

functional unit parallelism available than most single threads can effectively use.

13

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 Since SMT relies on the existing dynamic mechanisms, it does not switch

resources every cycle.

 Instead, SMT is always executing instructions from multiple threads, to

associate instruction slots and renamed registers with their proper threads.

Figure: How four threads use the issue slots of a superscalar processor in

different approaches?

 The four threads at the top show how each would execute running alone on a

standard superscalar processor without multithreading support.
 The three examples at the bottom show how they would execute running together in

14

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

three multithreading options.

 The horizontal dimension represents the instruction issue capability in each clock cycle.
 The vertical dimension represents a sequence of clock cycles.

 An empty (white) box indicates that the corresponding issue slot is unused in that

clock cycle.

 The shades of gray and color correspond to four different threads in the

multithreading processors.

 The additional pipeline start-up effects for coarse multithreading, which are not

illustrated in this figure, would lead to further loss in throughput for coarse

multithreading.

Advantage

 It is ability to boost utilization by dynamically scheduling functional units

among multiple threads.
 It increases hardware design facility.
 It produces better performance and add resources to a fine grained manner.

Disadvantage
It cannot improve performance if any of the shared resources are the

limiting bottlenecks for the performance.
MULTICORE AND OTHER SHARED MEMORY MULTIPROCESSORS

 Multiprocessor: A computer system with at least two processors
 Multicore: More than one processor available within a single chip.

 The conventional multiprocessor system used is commonly referred as shared memory

multiprocessor system.

15

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 Shared Memory Multiprocessor (SMP) is one that offers the programmer a single

physical address space across all processors which is nearly always the case for

multicore chips.

 Processors communicate through shared variables in memory, with all processors

capable of accessing any memory location via loads and stores.

 Systems can still run independent jobs in their own virtual address spaces, even if they

all share a physical address space.

 Use of shared data must be coordinated via synchronization primitives (locks) that

allow access to data to only one processor at a time

Shared Memory Multiprocessor System.[Tightly coupled processor]

 The conventional multiprocessor system used is commonly referred as

shared memory multiprocessor system.

 Single address space shared by all processors. Because every processor

communicates through a shared global memory.

 For high speed real time processing, these systems are preferable as their

throughput is high as compared to loosely coupled systems

 In tightly coupled system organization, multiple processors share a global

main memory, which may have many modules.

 Tightly coupled systems use a common bus, crossbar, or multistage network to

connect processors, peripherals, and memories.

16

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Two common styles of implementing Shared Memory Multiprocessors (SMP)

are, Uniform memory access (UMA) multiprocessors

 In this model, main memory is uniformly shared by all processors in multiprocessor

systems and each processor has equal access time to shared memory.
 This model is used for time-sharing applications in a multi user environment

 Tightly-coupled systems (high degree of resource sharing) suitable for general

purpose and time-sharing applications by multiple users

 Physical memory uniformly shared by all processors, with equal access time to

all words.
 Processors may have local cache memories. Peripherals also shared in some fashion.
 UMA architecture models are of two 20types,

Symmetric:

 All processors have equal access to all peripheral devices. All

processors are identical.

Asymmetric:

 One processor (master) executes the operating system other processors

may be of different types and may be dedicated to special tasks.

Non Uniform Memory Access (NUMA) multiprocessors

 In shared memory multiprocessor systems, local memories can be connected with every

processor. The collections of all local memories form the global memory being shared.
 In this way, global memory is distributed to all the processors. In this case, the access

17

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
to a local memory is uniform for its corresponding processor as it is attached to the

local memory.

 But if one reference is to the local memory of some other remote processor, then the

access is not uniform.

 It depends on the location of the memory. Thus, all memory words are not

accessed uniformly. All local memories form a global address space accessible by

all processors

 Programming NUMAs are harder but NUMAs can scale to larger sizes and

have lower latency to local memory

 Memory is common to all the processors. Processors easily communicate by means of

shared variables.

 These systems differ in how the memory and peripheral resources are shared

or distributed
 The access time varies with the location of the memory word.

 The shared memory is distributed among the processors as local memories, but

each of these is still accessible by all processors (with varying access times).

 Memory access is fastest from the locally –connected processor, with

the interconnection network adding delays for other processor accesses.

 Additionally, there may be global memory in a multiprocessor system, with two

separate interconnection networks, one for clusters of processors and their

cluster memories, and another for the global shared memories.

 Local memories are private with its own program and data. No memory contention

so that the number of processors is very large

 The processors are connected by communication lines, and the precise way in

which the lines are connected is called the topology of the multicomputer.

Distributed Memory (NUMA)

COMA:

 Cache Only Memory Architecture. The COMA model is a special case of the

NUMA model. Here all the distributed memories are converted to cache memories.
 The local memories for the processor at each node are used as cache instead of actual

18

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

memory.

Distributed Memory [Loosely Coupled Systems]

 These systems do not share the global memory because shared memory concept

gives rise to the problem of memory conflicts, which in turn slows down the

execution of instructions.

 Therefore, to alleviate this problem, each processor in loosely coupled systems is

having a large local memory (LM), which is not shared by any other processor.

 Thus, such systems have multiple processors with their own local memory and a

set of I/O devices.
 This set of processor, memory and I/O devices makes a computer system.

 Therefore, these systems are also called multi-computer systems. These computer

systems are connected together via message passing interconnection network through

which processes communicate by passing messages to one another.

 Since every computer system or node in multicomputer systems has a separate

memory, they are called distributed multicomputer systems. These are also called

loosely coupled systems.

 Message passing: Communicating between multiple processors by explicitly sending

and receiving information.

 Clusters: Collections of computers connected via I/O over standard network switches

to form a message-passing multiprocessor.

 Send message routine: A routine used by a processor in machines with private
memories to pass a message to another processor.

 Receive message routine: A routine used by a processor in machines with private

memories to accept a message from another processor.

19

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

21

2021 - 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

22

2021 - 2022 Jeppiaar Institute of Technology

