

JEPPIAAR INSTITUTE OF TECHNOLOGY

“Self-Belief | Self Discipline | Self Respect”

DEPARTMENT

OF

ELECTRONICS AND COMMUNICATION ENGINEERING

LECTURE NOTES

EC8552 – COMPUTER ARCHITECTURE AND ORGANIZATION

(Regulation 2017)

Year/Semester: III / V ECE

2020 – 2021

Prepared by

Mr. N. Prabhakaran

Associate Professor / IT

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

UNIT – II ARITHMETIC FOR COMPUTERS

Addition and Subtraction – Multiplication – Division – Floating Point Representation –

Floating Point Operations – Subword Parallelism

ALU:

 Arithmetic Logic Unit (ALU). Hardware that performs addition, subtraction,

and usually logical operations such as AND and OR.


 The arithmetic logic unit (ALU) is the brawn of the computer.

Half Adder

Half Adder: is a combinational circuit that performs the addition of two bits, this circuit

needs two binary inputs and two binary

output

s.

Full Adder

 Full Adder is a combinational circuit that performs the addition of three bits

(two significant bits and previous carry).


 It consists of three inputs and two outputs, two inputs are the bits to be added,

the third input represents the carry form the previous position.


 The full adder is usually a component in a cascade of adders, which add 8, 16,

etc, binary numbers.


 An adder must have two inputs for the operands and a single-bit output for the

sum and the second output to pass on the carry, called CarryOut.

1

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 The CarryOut from the neighbor adder must be included as an input, we need a

third input. This input is called CarryIn.

Binary Adder (Asynchronous Ripple-Carry Adder)

 A binary adder is a digital circuit that produces the arithmetic sum of two binary

numbers.
 A binary adder can be constructed with full adders connected in cascade with the

output carry form each full adder connected to the input carry of the next full adder in

the chain.
 The four-bit adder is a typical example of a standard component .It can be used in

many application involving arithmetic operations.
 The input carry to the adder is and it ripples through the full adders to the output carry

2

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

bit binary adder requires full adders

CARRY-LOOK AHEAD ADDER

 Fast adder circuit must speed up the generation of carry signals. Carry look ahead

logic uses the concepts of generating and propagating carries. Where Si is the sum and

Ci+1 is the carry out.

3

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Adv:
1. Circuit is simplicity
2. Structure is slightly faster
3. Easy to understand
4. To eliminate inter stage carry delay.
Dadv:
1. Carry look-ahead is expensive

Carry Propagation Delay

The sum and carry output of any stage cannot be produced until the input carry occurs.

This leads to a time delay in the addition process.

Parallel Subtractor

 A Parallel Subtractor is a digital circuit capable of finding the arithmetic difference of

two binary numbers that is greater than one bit in length by operating on

corresponding pairs of bits in parallel.


 The parallel subtractor can be designed in several ways including combination of half

and full subtractors, all full subtractors or all full adders with subtrahend complement

input.

4

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Advantages of parallel Adder/Subtractor

 The parallel adder/subtractor performs the addition operation faster as compared

to serial adder/subtractor.


 Time required for addition does not depend on the number of bits.


 The output is in parallel form i.e all the bits are added/subtracted at the same time.


 It is less costly.

Disadvantages of parallel Adder/Subtractor

 Each adder has to wait for the carry which is to be generated from the previous

adder in chain.


 The propagation delay(delay associated with the travelling of carry bit) is found to

increase with the increase in the number of bits to be added.

ADDITION AND SUBTRACTION:

 Digits are added bit by bit from right to left, with carries passed to the next digit to

the left.


 Subtraction uses addition. The appropriate operand is simply negated before

being added.

Binary addition:

Let’s try adding 6ten to 7ten in binary.

The following figure shows the sums and carries. The carries are shown in parentheses.

 Binary addition, showing carries from right to left. The rightmost bit adds 1 to

0, resulting in the sum of this bit being 1 and the carry out from this bit being 0.


 Hence, the operation for the second digit to the right is 0+1+1.


 This generates a 0 for this sum bit and a carry out of 1.

5

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 The third digit is the sum of 1+1+1, resulting in a carry out of 1 and a sum bit of 1.


 The fourth bit is 1+0+0, yielding a 1 sum and no carry.

Binary subtraction:

 Subtracting 6ten from 7ten can be done directly

When overflow cannot occur in addition and subtraction?

Case: 1

 When adding operands with different signs, overflow cannot occur. The reason is the

sum must be no larger than one of the operands. For example, -10+4=-6.


 Since the operands fit in 32 bits and the sum is no larger than an operand, the sum

must fit in 32 bits as well. Therefore, no overflow can occur when adding positive and

negative operands.

Case: 2

 When the signs of the operands are the same, overflow cannot occur. To see this,

remember that c – a= c + (-a) because we subtract by negating the second operand and

then add.


 Therefore, when we subtract operands of the same sign we end up by adding operands

of different signs.

When overflow can occur in addition and subtraction?

Case: 1

 Overflow occurs when adding two positive numbers and the sum is negative


Case: 2


 Overflow occurs when adding two negative numbers and the sum is positive. This

spurious sum means a carry out occurred into the sign bit.

Case: 3

 Overflow occurs in subtraction when we subtract a negative number from a positive

number and get a negative result.

Case: 4

 When we subtract a positive number from a negative number and get a positive result.

Such a ridiculous result means a borrow occurred from the sign bit.

6

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 Add (add), add immediate (addi), and subtract (sub) cause exceptions on overflow.


 Add unsigned (addu), add immediate unsigned (addiu), and subtract unsigned

(subu) do not cause exceptions on overflow.

Exception:

 Exception also called interrupt on many computers. An unscheduled event

that disrupts program execution; used to detect overflow.

Interrupt:

 An exception that comes from outside of the processor.


EPC:


 MIPS include a register called the Exception Program Counter (EPC) to contain the

address of the instruction that caused the exception.


 The instruction move from system control (mfc0) is used to copy EPC into a general-

purpose register so that MIPS software has the option of returning to the off ending

instruction via a jump register instruction.

MULTIPLICATION

 The first operand is called the multiplicand and the second the multiplier. The

final result is called the product.


 If we ignore the sign bits, the length of the multiplication of an n-bit multiplicand

and an m-bit multiplier is a product that is n+ m bits long.
 That is, n+ m bits are required to represent all possible products.
 For example, Multiplying 1000ten by 1001ten: Multiplicand 1000ten Multiplier

1001ten
1000ten x 1001ten
1000

0000

0000

1000

Product 1001000ten

Case: 1

 Just place a copy of the multiplicand (1 x multiplicand) in the proper place if

the multiplier digit is a 1.

Case: 2

 Place 0 (0 x multiplicand) in the proper place if the digit is 0.

FIRST VERSION OF THE MULTIPLICATION HARDWARE

 The Multiplicand register, ALU, and Product register are all 64 bits wide, with

only the Multiplier register containing 32 bits.


 The 32-bit multiplicand starts in the right half of the Multiplicand register and

is shifted left 1 bit on each step.
 The multiplier is shifted in the opposite direction at each step.
 The algorithm starts with the product initialized to 0.

7

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 Control decides when to shift the Multiplicand and Multiplier registers and when

to write new values into the Product register.

Step: 1

 The least significant bit of the multiplier (Multiplier0) determines whether
the multiplicand is added to the Product register.

 If the least significant bit of the multiplier is 1, add the multiplicand to
the product.

Step: 2

 If not, go to the next step. Shift left the multiplicand register by 1 bit.

8

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Step: 3
 Then shift right the multiplier register by 1 bit. These three steps are

repeated 32 times to obtain the product.
 If each step took a clock cycle, this algorithm would require almost 100

clock cycles to multiply two 32-bit numbers.
Example:

Using 4-bit numbers to save space, multiply 2ten x 3ten, or 0010two x 0011two.

Flowchart:

9

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Refined version of the multiplication hardware:

 Comparing with the first algorithm the Multiplicand register, ALU, and Multiplier

register are all 32 bits wide, with only the Product register left at 64 bits.
 Now the product is shifted right. The separate Multiplier register also disappeared.

10

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

The multiplier is placed instead in the right half of the Product register.

Signed Multiplication

 First convert the multiplier and multiplicand to positive numbers and then

remember the original signs.


 The algorithms should then be run for 31 iterations, leaving the signs out of

the calculation.

Faster Multiplication

 Hardware designers can now build much faster multiplication hardware. Whether the

multiplicand is to be added or not is known at the beginning of the multiplication by

the 32 multiplier bits.


 Faster multiplications are possible by essentially providing one 32-bit adder for each

bit of the multiplier:


 One input is the multiplicand ANDed with a multiplier bit, and the other is the output

of a prior adder.


 To connect the outputs of adders on the right to the inputs of adders on the left,

making a stack of adders 32 high.
 Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use

31adders and then organizes them to minimize delay.

BOOTH’S BIT-PAIR RECODING OF THE MULTIPLIER.

A=+13 (Multiplicand) AND B= -6 (Multiplier)

Bit-pair recoding halves the maximum number of summands (versions of the multiplicand).

11

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
Example

Multiplicand Selection Decisions

Multiplication requiring only n/2 summands

BOOTH’S MULTIPLICATION ALGORITHM WITH SUITABLE

EXAMPLE Booth’s Algorithm Principle:

 Performs additions and subtractions of the Multiplicand, based on the value of the
multiplier bits.




 The algorithm looks at two adjacent bits in the Multiplier in order to decide the
operation to be performed.



12

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

The Multiplier bits are considered from the least significant bit (right-most) to the most significant bit; by default
a 0 will be considered at the right of the least significant bit of the multiplier.

 If Multiplicand has Md bits and Multiplier has Mp bits, the result will be stored in a

Md+Mp bit register and will be initialised with 0s




 As repeated operations and shifts are performed on partial results, the result register is
the accumulator (A).




 Booth‘s algorithm gives a procedure for multiplying signed binary integer. It is based
on the fact that strings of 0‘s in the multiplier require no addition but only shifting
and a string of 1‘s in the multiplier require both operations.



Algorithm

The Q0 bit of the register Q and Q-1 is examined:

 If two bits are the same (11 or 00), then all of the bits of the A, Q and Q1 registers are

shifted to the right 1 bit. This shift is called arithmetic shift right.


 If two bits differ i.e., whether 01, then the multiplicand is adder or 10, then the
multiplicand is subtracted from the register A. after that, right shift occurs in
the register A, Q and Q1.



Flowchart of Booth’s Algorithm for 2’s complement multiplication

13

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

DIVISION ALGORITHM AND HARDWARE:
Dividend:

 A number being divided is called dividend.
Divisor:

 A number that the dividend is divided by is called divisor.
Quotient:

 It is called the primary result of a division.


 A number that when multiplied by the divisor and added to the remainder

produces the dividend is known as quotient.

Remainder:

 It is the secondary result of a division.


 A number that when added to the product of the quotient and the divisor produces

the dividend is known as remainder.

 Divide’s two operands, called the dividend and divisor, and the result, called

the quotient, are accompanied by a second result, called the remainder.
 Here is another way to express the relationship between the components:

Dividend=Quotient x Divisor + Remainder

Division Hardware:

 The Divisor register, ALU, and Remainder register are all 64 bits wide, with only

the Quotient register being 32 bits.


 The 32-bit divisor starts in the left half of the Divisor register and is shifted right 1

bit each iteration.
 The remainder is initialized with the dividend.


 Control decides when to shift the Divisor and Quotient registers and when to write

the new value into the Remainder register.

14

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Divide algorithm:

Step: 1

 It must first subtract the divisor register from the Remainder register and place

the result in the Remainder register.

Step: 2

 Next we performed the comparison in the set on less than instruction.


 If the result is positive, the divisor was smaller or equal to the dividend, so shift

the Quotient register to the left, setting the new rightmost bit to 1.


 If the result is negative, the next step Restore the original value by adding the Divisor

register to the Remainder register and placing the sum in the Remainder register.
 Also shift the Quotient register to the left, setting the new least significant bit to 0

Step: 3
 The divisor is shifted right by 1 bit and then we iterate again.

15

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 The remainder and quotient will be found in their registers after the iterations

are complete.

16

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten by 2ten, or 0000

0111two by 0010two.

An improved version of the division hardware:

 The Divisor register, ALU, and Quotient register are all 32 bits wide, with only

the Remainder register left at 64 bits.


 Compared to above division hardware, the ALU and Divisor registers are halved

and the remainder is shifted left.


 This version also combines the Quotient register with the right half of the Remainder

register.

Signed Division

 The simplest solution is to remember the signs of the divisor and dividend and

then negate the quotient if the signs disagree.


 The one complication of signed division is that we must also set the sign of

the remainder. Remember that the following equation must always hold:

17

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Rule:

 The dividend and remainder must have the same signs, no matter what

the signs of the divisor and quotient.

Faster Division

 There are techniques to produce more than one bit of the quotient per step.


 The SRT division technique tries to predict several quotient bits per step,

using a table lookup based on the upper bits of the dividend and remainder.


 These algorithms use 6 bits from the remainder and 4 bits from the divisor

to index a table that determines the guess for each step.

18

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Restoring Division Algorithm

 Step-1: First the registers are initialized with corresponding values (Q = Dividend, M

= Divisor, A = 0, n = number of bits in dividend)


 Step-2: Then the content of register A and Q is shifted right as if they are a single unit


 Step-3: Then content of register M is subtracted from A and result is stored in A


 Step-4: Then the most significant bit of the A is checked if it is 0 the least significant

bit of Q is set to 1 otherwise if it is 1 the least significant bit of Q is set to 0 and value

of register A is restored i.e the value of A before the subtraction with M


 Step-5: The value of counter n is decremented


 Step-6: If the value of n becomes zero we get of the loop otherwise we repeat fro step 2


 Step-7: Finally, the register Q contain the quotient and A contain remainder

19

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

20

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Example: 8 divide by 3=2 (2/3)

The quotient (0010)2 = 2 is in register Q, and the reminder (0010)2 = 2 is in register A.

Non-Restoring Division Algorithm

 Step-1: First the registers are initialized with corresponding values (Q = Dividend, M

= Divisor, A = 0, n = number of bits in dividend)


 Step-2: Check the sign bit of register A


 Step-3: If it is 1 shift left content of AQ and perform A = A+M, otherwise shift left

AQ and perform A = A-M (means add 2’s complement of M to A and store it to A)


 Step-4: Again the sign bit of register A


 Step-5: If sign bit is 1 Q[0] become 0 otherwise Q[0] become 1 (Q[0] means

least significant bit of register Q)


 Step-6: Decrements value of N by 1


 Step-7: If N is not equal to zero go to Step 2 otherwise go to next step


 Step-8: If sign bit of A is 1 then perform A = A+M


 Step-9: Register Q contain quotient and A contain remainder

21

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

22

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE
FLOATING POINT

Normalized number:

 A number in floating-point notation that has no leading 0
s
 is known as normalized

number. i.e., a number start with a single nonzero digit.
 For example, 1.0ten×10

-9
 is in normalized scientific notation, but 0.1ten×10

-8
 and

10.0ten ×10
-10

 are not.

Binary numbers in scientific notation:

 To keep a binary number in normalized form, we need a base that we can increase or

decrease by exactly the number of bits the number must be shifted to have one nonzero

digit to the left of the decimal point. 1.0two ×2
-1



Floating-Point Representation

Floating point:

 Computer arithmetic that represents numbers in which the binary point is not fixed.


Fraction:


 The value, generally between 0 and 1, placed in the fraction field. The fraction is

also called the mantissa.

Exponent:

 In the numerical representation system of floating-point arithmetic, the value that is

placed in the exponent field.

Single precision:

 A floating-point value represented in a single 32-bit word. Floating-point numbers are

usually a multiple of the size of a word.


 Where s is the sign of the floating-point number (1 meaning negative), exponent is the

value of the 8-bit exponent field (including the sign of the exponent), and fraction is

the 23-bit number.
 F involves the value in the fraction field and E involves the value in the exponent field.

Format:

Overflow:

 A situation in which a positive exponent becomes too large to fit in the exponent

field is known as overflow.

Underflow:

 A situation in which a negative exponent becomes too large to fit in the exponent

field is known as underflow.

Double precision:

 One way to reduce chances of underflow or overflow is called double, and

operations on doubles are called double precision floating-point arithmetic.
 It has a larger exponent. A floating-point value represented in two 32-bit words.


23

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 Where s is still the sign of the number, exponent is the value of the 11-bit

exponent field, and fraction is the 52-bit number in the fraction field.

Format:

IEEE 754 Format:

 MIPS double precision allows numbers almost as small as 2.0ten × 10
+308

 and

almost as large as 2.0ten × 10
-308

.
 Although double precision does increase the exponent range.
 Its primary advantage is its greater precision because of the much larger fraction.
 IEEE 754 makes the leading 1-bit of normalized binary numbers implicit.


 Hence, the number is actually 24 bits long in single precision (implied 1 and a 23-

bit fraction), and 53 bits long in double precision (1+52).

 The desirable notation must therefore represent the most negative exponent as 00 …

00two and the most positive as 11 … 11two.
 This convention is called biased notation, with the bias being the number subtracted

from the normal, unsigned representation to determine the real value.


 IEEE 754 uses a bias of 127 for single precision, so an exponent of -1 is represented

by the bit pattern of the value -1+127ten, or 126ten=0111 1110two, and +1 is represented

by 1+127, or 128ten = 1000 0000two.


 The exponent bias for double precision is 1023. Biased exponent means that the value

represented by a floating-point number is really

24

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Example: 1

25

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Example: 2

FLOATING-POINT ADDITION

 Assume that we can store only four decimal digits of the significand and two

decimal digits of the exponent.

Example: 1

Perform floating point addition for the following numbers.

9.999ten x 10
1
 +1.610ten x 10

-1

Step 1:

 Compare the exponent of both the operands.


 If it equal add the two operand (significand) .If it is not equal then increase

the smaller exponent.


 i.e., shift the smaller number to the right until its exponent would match the

larger exponent. As per our example

1.610ten x 10
-1

= 0.1610ten x 10
0
 = 0.01610 ten x 10

1


 But we can represent only four decimal digits so, after shifting, the number is really

0.016 ten x 10
1

Step 2:
Now add the Significand

9.999 x 101

0.016 x 101

10.015 x 101

Step 3:

 Normalize the sum, either shifting right and incrementing the exponent or shifting

left and decrementing the exponent.
 This sum is not in normalized scientific notation, so we need to adjust it:

10.015 x 10
1
 = 1.0015 X 10

2
 = 1.0015 X 10

2


 Whenever the exponent is increased or decreased, we must check for overflow

or underflow. i.e., we must make sure that the exponent still fits in its field.

Step 4:

 Round the significand to the appropriate number of bits.
 If the sum may no longer be normalized and we would need to perform step 3 again.

1.002ten x 10
2


26

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Example: 2

Perform floating point addition for the following numbers.

0.5ten and -0.4375ten

Solution:
Assuming that we keep 4 bits of precision. 0.5ten
Operand 1: Convert the operands to binary

0.5 x 2 =1.0

Scientific Notation

0.1 x 2
0

Normalizing the above value

1.0 x 2
-1

Operand 2: Convert the operands to binary -0.4375ten
0.4375 x 2 = 0.8750

0.8750 x 2 = 1.7500

0.7500 x 2 = 1.5000

1.5000 x 2 = 1.0000

Scientific Notation

0.0111 x 2
0

Normalizing the above value

1.110 x 2
-2

Step 1:

The significand of the number with the lesser exponent (-1.110two x 2
-2

) is shifted right
until its exponent matches the larger number:

-1.110two x 2
-2

 = - 0.111two x 2
-1

Step 2:
Add the significands

1.000 x 2
-1

- 0.111 x 2
-1

 [Subtraction]

0.001 x 2
-1

Step 3: Normalize the sum and checking for overflow or underflow

0.001 x 2
-1

 = 1.0 x 2
-4

Step 4: Round the sum

1.000 x 2
-4

Then convert the sum to decimal

1.000 x 2
-4

 = 0.0001two

1 / 2
4
 = 1/16ten= 0.0625ten

27

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Flowchart:

 First, the exponent of one operand is subtracted from the other using the small ALU

to determine which is larger and by how much.


 This difference controls the three multiplexors; from left to right, they select the

larger exponent, the significand of the smaller number, and the significand of the

larger number.


 The smaller significand is shifted right, and then the significands are added together

using the big ALU.


 The normalization step then shifts the sum left or right and increments or decrements

the exponent.


 Rounding then creates the final result, which may require normalizing again to

produce the actual final result.

28

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

Block Diagram:

FLOATING-POINT MULTIPLICATION

Example: 1
Multiplying decimal numbers in scientific notation:

1.110ten x 10
10

 x 9.200ten x 10
-5

Assume that we can store only four digits of the significand and two digits of the exponent.

Step 1:

 We calculate the exponent of the product by simply adding the exponents of

the operands together:
New exponent = 10 + (-5) = 5


 Let’s do this with the biased exponents as well to make sure we obtain the

same result:
10 + 127 = 137, and -5 + 127 = 122, so New exponent = 137 +122=259

 This result is too large for the 8-bit exponent field.


 The problem is with the bias because we are adding the biases as well as

the exponents.

29

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

New exponent= (10+127)+(-5+127)=(5+2X127)=259

 To get the correct biased sum when we add biased numbers, we must subtract the

bias from the sum.


 New exponent=137+122-127=259-127=132= (5+127) and 5 is indeed the

exponent we calculated initially.

Step 2:
Next comes the multiplication of the significands:

1.110ten

X 9.200ten

0000

0000

2220

9990

The product is 10212000ten

 Assuming that we can keep only three digits to the right of the decimal point, the

product is 10.212ten x 105

Step 3:
This product is unnormalized, so we need to normalize it:

10.212ten x 10
5
 = 1.0212ten x 10

6

 After the multiplication, the product can be shifted right one digit and adding 1 to the

exponent.


 At this point, we can check for overflow and underflow. Underflow may occur if

both operands are small, that is, if both have large negative exponents.

Step 4:
Round of the Product

1.021ten x 10
6

Step 5:

 The sign of the product depends on the signs of the original operands.


 If they are both the same, the sign is positive; otherwise, it’s negative. Hence,

the product is

+1.021ten x 10
6

Example: 2

Multiple the numbers 0.5ten and -0.4375ten, using the steps in the above algorithm

 Binary equivalent of 0.5ten = 1.000 x 2
-1

 and -0.4375ten = -1.110 x 2
-2


Step 1 :
Adding the Exponents without

bias -1 + (-2) = -3
Or using the biased representation

Step 2 : Multiplying the significands

31

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

The Product is 1.110000two x 2
-3

,but we use 4 bits, so it is 1.110 two x 2
-3


Step 3:

Normalize the product, as per our example it is already normalized

one 1.110 x 2
-3

Step 4:
Rounding the product no change

1.110 x 2-3

Step 5:
Since the signs of the original operands differ, make the sign of the product negative.

Hence, the product is

-1.110 x 2-3

Converting to decimal to check our results:

-1.110 x 2-3 = - 0.00111 = 1 /8 + 1 / 16 + 1 / 32 = - 0.21875

Flow Chart:

Guard Bit:

32

2021- 2022 Jeppiaar Institute of Technology

EC8552 - COMPUTER ARCHITECTURE AND ORGANIZATION Department of ECE

 Extra bits kept on the right during intermediate calculations of floating point numbers

is called guard bit and it used to improve rounding accuracy.

Round:

 Method to make the intermediate floating-point result fit the floating-point format.
 The goal is typically to find the nearest number that can be represented in the format.

Sticky Bit:

 A bit used in rounding in addition to guard and round that is set whenever there are

nonzero bits to the right of the round bit.

Subword Parallelism:

 By partitioning the 128-bit adder, a processor could use parallelism to perform

simultaneous operations on short vectors of sixteen 8-bitoperands, eight 16-bit

operands, four 32-bit operands, or two 64-bit operands.
 The cost of such partitioned adders was small.


 Given that the parallelism occurs within a wide word, the extensions are classified

as subword parallelism.
 It is also classified under the more general name of data level parallelism.
 They have been also called vector or SIMD, for single instruction, multiple data.

33

2021- 2022 Jeppiaar Institute of Technology

