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– Applications of heap. 

Tree   

• A Tree is a nonlinear data structure consists of one or more data nodes where 

one node is designated as the root of the tree while the remaining nodes are 

called as the children of the root. 

• In a general tree, A node can have any number of children nodes, but it can 

have only a single parent. 

• The following image shows a tree, where the node A is the root node of the tree 

while the other nodes can be seen as the children of A. 

 

Basic terminology 

1. Root Node:- The root node is the topmost node in the tree hierarchy which doesn't 

have any parent. 

2. Leaf Node or external node :- The node of tree, which doesn't have any child node, 

is called leaf node.  

3. Level : . Root node of the tree is always present at level 0. The level of the any other child 

node is one more than that of the parent. Ex : level of Node F is 2.  



 

 

 

4. Depth or Height : The maximum level of any node in the tree is called Depth or 

Height.  For the above tree Depth or height is 2.  

5. Degree:  The number of nodes connected to a particular node is called Degree.  For 

Ex: Degree of node B is 3.  Degree of node E is 1.  

6. Subtree or forest:  The nodes other than the root node are partitioned into the non 

empty sets called subtree. 

If we delete the root and the edges connecting the root to the nodes at level 1, then we 

get the Subtree with root as the node at level 1. 

The tree T1, T2 and T3 is called sub-trees of the root node.  

  

 

Binary Tree ADT 

A binary tree is a tree in which no node can have more than two children. In a binary tree, 

the topmost element is called root node, and each node has 0, 1 or at the most 2 children.  



 

 

 

Types of Binary Tree  

 

Full binary tree: It is a binary tree in which all interior nodes have two children and all 

leaves have the same depth or same level. 

 

• A perfect full binary tree with l leaves has n = 2l-1 nodes. 

• In perfect full binary tree, l = 2h and n = 2h+1 - 1 where, n is number of nodes, h is 

height of tree and l is number of leaf nodes. 

Ex: Leaf node = 4, then no of nodes n= 2*4-1 = 7.  

Complete binary tree: It is a binary tree in which every level, except possibly the last, is 

completely filled, and all nodes are as far left as possible. 



 

 

 

The number of internal nodes in a complete binary tree of n nodes is floor(n/2). 

 

Degenarate tree:  It is a tree is where each parent node has only one child node. It behaves 

like a linked list.  There are 2 types, Left Skewed and Right Skewed binary tree. 

 

1. Left Skewed Trees: Grows only Left Side  
 

      

2. Right Skewed Trees: Grows only Right Side  
 

 

                                                             



 

 

Strictly binary tree: It is a tree in which every node in the tree has either 0 or 2 children. 

 

Representation of Binary Tree: 

1. Linked List Representation 

2. Array Representation 

Linked List Representation: In Linked List Representation, Each node contains three 

components: 

1. Pointer to left subtree 

2. Pointer to right subtree 

3. Data element 

The topmost node in the tree is called the root. An empty tree is represented 

by NULL pointer. 

A representation of binary tree is shown: 

 

 

 



 

 

Array Representation: It Can be represented using Single one-dimensional array, but it 

is inefficient as it requires lots of memory space. The root of the tree is represented in the 

first location, followed by it's children. If a node does not have a children it occupies 

empty location.   

              

Tree traversals or Binary Tree Traversal 

Traversing a binary tree is the process of visiting a node in the binary tree exactly once in 

a systematic way. There are three types of tree traversal 

1. Depth First Traversals :  It can be Traversed in 3 Ways 

• Inorder Traversal  

• Preorder Traversal  

• Postorder Traversal  

2. Breadth First Traversal (Or Level Order Traversal) 

       
 

https://www.geeksforgeeks.org/618/
https://www.geeksforgeeks.org/level-order-tree-traversal/


 

 

 
 
 

Example Tree 

1. Depth First Traversals:  It can be Traversed in 3 Ways 

• Inorder Traversal (Left-Root-Right) 

• Preorder Traversal (Root-Left-Right) 

• Postorder Traversal (Left-Right-Root) 

In-order Traversal (LRoR):  In this, we do the following: 

• First process left subtree. 

• Then, process current root node. 

• Then, process right subtree. 

Procedure for Inorder Traversal 

void printInorder(struct node* node)  

{  

     if (node == NULL)  

          return;  

      printInorder(node->left);  

      printf("%d ", node->data);    

     printInorder(node->right);  

}  

 

Example: Inorder traversal for the above given figure is 4 2 5 1 3 . 

Uses of Inorder 

• In case of binary search trees (BST), Inorder traversal gives nodes in non-

decreasing order. 

https://www.geeksforgeeks.org/618/


 

 

 

Pre-order Traversal: (RoLR): In this technique, we do the following : 

• Process data of root node. 

• First, traverse left subtree completely. 

• Then, traverse right subtree. 

Procedure for Preorder Traversal: 

void printPreorder(struct node* node)  

{  

     if (node == NULL)  

          return;  

      printf("%d ", node->data);    

      printPreorder(node->left);    

      printPreorder(node->right);  

}      

Example: Preorder traversal for the above given figure is 1 2 4 5 3. 

Uses of Preorder 

• Preorder traversal is used to create a copy of the tree.  

• Preorder traversal is also used to get prefix expression on of an expression tree.  

 

Postorder Traversal: ( LRRo):  In this traversal technique we do the following: 

• First traverse left subtree completely. 

• Then, traverse right subtree completely. 

• Then, process data of node. 

Procedure for Postorder 

void printPostorder(struct node* node)  

{  

     if (node == NULL)  

        return;  

       printPostorder(node->left);  

       printPostorder(node->right);  

       printf("%d ", node->data);  

}  

Example: Postorder traversal for the above given figure is 4 5 2 3 1. 



 

 

 

Uses of Postorder 

• Postorder traversal is also useful to get the postfix expression of an expression tree.  

Main Program :  

#include <stdio.h>  

#include <stdlib.h>  

struct node  

{    int data;  

     struct node* left;  

     struct node* right;  

};  

struct node* newNode(int data)  

{   struct node* node = (struct node*) malloc(sizeof(struct node));   

    node->data = data;       node->left = NULL;       node->right = NULL;  

    return(node);  

}  

int main()  

{  

     struct node *root  = newNode(1);  

     root->left             = newNode(2);  

     root->right           = newNode(3);  

     root->left->left     = newNode(4);  

     root->left->right   = newNode(5);   

   

     printf("Preorder traversal");  

     printPreorder(root);  

   

     printf("Inorder traversal");  

     printInorder(root);    

   

     printf("Postorder traversal");  

     printPostorder(root);  

     return 0;  

}  

 



 

 

Breadth First or Level Order Traversal: In a breadth-first traversal, the processing 

proceeds horizontally form the root to all its children, then to its children’s children, and 

so forth until all nodes have been processed. In other words, in breadth traversal, each 

level is completely processed before the next level is started.   

 Example: Breadth First  Traversal for the above given figure is 1 2 3 4 5. 

Procedure for breadth-first traversal  

printGivenLevel(tree, level) 

if tree is NULL then return; 

if level is 1, then 

    print(tree->data); 

else if level greater than 1, then 

printGivenLevel(tree->left, level-1); 

printGivenLevel(tree->right, level-1); 

 

Another example for tree traversal 

 

Preorder traversal sequence: F, B, A, D, C, E, G, I, H (root, left, right) 
Inorder traversal sequence: A, B, C, D, E, F, G, H, I (left, root, right) 

Postorder traversal sequence: A, C, E, D, B, H, I, G, F (left, right, root) 



 

 

One more example: 

 

Applications of Trees 

1. Trees are used to store simple as well complex datas . 
2. B+ trees are used to store tree structures on disc. Used as a  

index to large number of records. 
3. for compiler construction. 
4. used in File system directories  
5. used in database design  
6. used in compression algorithms and cryptographic applications  
7. Trees are used in text processing (Dictionaries) 

 

 



 

 

EXPRESSION TREES 

Expression tree is a binary tree in which Leaf nodes are operands and internal 
nodes are operators. 
 
For constructing an expression tree by performing the following steps :  
 

1. Convert the given expression into postfix form 
2. Read one symbol at a time from the postfix expression.  
3. Check whether the symbol is an operand or operator. 

i. If the symbol is an operand, create a one node tree and push a 
pointer on to the stack. 

ii. If the symbol is an operator, pop two pointers from the stack 
namely, T1 and T2 and form a new tree with root as the operator, 
and T2 as the left child and T1 as the right child. 

iii.  A pointer to this new tree is then pushed on to the stack. 
 
 Example: Consider Postfix form  of expression a b + c d e + * * 
 
Steps to convert expression tree:  
The first two symbols are operands, so we create one-node trees and push 
pointers to them onto a stack.* 
 
*For convenience, we will have the stack grow from left to right in the diagrams. 

 
Next, a '+' is read, so two pointers to trees are popped, a new tree is formed, and 
a pointer to it is pushed onto the stack.* 



 

 

 
Next, c, d, and e are read, and for each a one-node tree is created and a pointer 
to the corresponding tree is pushed onto the stack. 

 
 

Now a '+' is read, so two trees are merged. 
 

 
Continuing, a '*' is read, so we pop two tree pointers and form a new tree with 
a '*' as root. 



 

 

 
Finally, the last symbol is read, two trees are merged, and a pointer to the final 
tree is left on the stack. 
 

 
 

BINARY SEARCH TREE 
Binary search tree (BST) is a  special type of  binary tree data structure  in 
which for each node key value,  

1. The left sub-tree of a node contains only nodes with keys less than the 
node's key.  

2. The right sub-tree of a node contains only nodes with keys greater than 
the node's key. 

3. Both the left and right sub-trees must also be binary search trees. 
4. Each node (item in the tree) has a distinct key. 



 

 

 

 
 

 
EXAMPLE Construct a BST with nodes 2,4,5,7,1. 
 
The Values in the left subtree must be smaller than the keyvalue to be inserted. 
The Values in the right subtree must be larger than the keyvalue to be inserted. 
 
Take the 1st element 2 and compare with 4. 2<4 
So  

 

 



 

 

 
 
Example 2: 
  

 

 
Continue like this …… 
 
 



 

 

Final Tree is  
 

 
 
OPERATIONS 
 
Operations on a binary search tree require comparisons between nodes.  
The following are the operations that are being done in Binary Search Trees 
➢ Searching -  Find Min or Find Max . 
➢ Insertion. 
➢ Deletion.  
➢ Sorting.  
 
Find  
If the key stored at T is x, we can return T. Otherwise, we make a recursive call 
on a subtree of T, either left or right, depending on the relationship of x to the 
key stored in T. 



 

 

 
Find operation for binary search trees 
Position find(structtreenode T, intnum)  
{ 
While(T!=NULL) { 
if(num>T-->data) { 
T=T-->right; 
if(num<T-->data)  
T=T-->left; } 
else if(num< T-->data) 
{ 
T=T-->left; 
if(num>T-->data) 
T=T-->right; 
} 
if(T-->data==num) 
break; } 
return T; } 
 
Find_min and Find_max 
 
To perform a Findmin, start at the root and go left as long as there is a left child. 
The stopping point is the smallest element in the BST. 
To perform a Findmax, start at the root note and go right as long as there is right 
child. The stopping point is the largest element. 
 
Recursive implementation of find_min & find_max for binary search Trees 
 
// Finding Minimum Position 
 
findmin(searchtree T) 
{ 
if(T==NULL) 
return NULL; 
else if(T-->left==NULL) 
return T;  
else  
return findmin(T-->left); 
} 



 

 

 
// Finding Maximum Position  
 
findmax(searchtree T) 
{ 
if(T==NULL) 
return NULL; 
else if(T-->right==NULL) return T;  
else  
return findmax(T-->right); 
} 
 
Insert 
To insert x into tree T, proceed down with the following steps.  
 
1. Allocate memory for the new node X 
2. The insertion of an element X into the tree  is as follows 
3. check the root node of the tree is null  
4. if the condition is true then, then the new node is the root node. otherwise 

follow the next few steps, 
5. compare the new node with the root node key value. 

• If the new node is less than the root node, Traverse the left subtree 
recursively until it reaches left Null,  then left is assigned to new node.  

• If the new node is greater than the root node, Traverse the right subtree 
recursively until it reaches right Null,  then right is assigned to new node. 

 
EXAMPLE Insert node 5 in given tree 
 

 
 



 

 

 
 
 
 
Procedure for Insertion into a binary search tree 
Searchtree insert(elementtype X, Searchtree T) 
{ 
If(T== NULL) { 
/* create and return a one node tree*/ T=malloc(sizeof(structtreenode)); 
If(T==NULL) 
Fatalerror(􀇲Out of Space􀇲); 
Else { 
T-->element=X; 
T-->left=T-->right=NULL; 
} 
} 
Else if(x<T-->element) T-->left=insert(X,T-->left); 
Else if(X>=T-->left) T-->right=insert(X,T-->right); Return T; 



 

 

} 
 
Delete 
The hardest operation is deletion in BST.   It can be done in 3 ways. 
 

• Deleting a leaf node 
• Deleting a node with one child 
• Deleting a node with Two child 

 
Case 1: Deleting a leaf node:   If the node is a leaf, it can be deleted 
immediately.  
Steps are  
1. Search the parent of the leaf node and make the link to the leaf node as NULL. 
2. Release the memory of the deleted node. 

 
 
Case 2: Deleting a node with one child:   
 
1. Search the parent of the node to be deleted.  
2. Assign the link of the parent node to the child of the node to be deleted.  
3. Release the memory for the deleted node. 
 



 

 

 
 
Case 3: Deleting a node with two child:   
 
It is difficult to delete a node which has two children. 
So, a general strategy has to be followed. 
1. Replace the data of the node to be deleted with either the smallest element 

from the right subtree or the largest element from the left subtree. 

 
Deletion routine for binary search trees 
Searchtree delete(elementtype X, searchtree T)  
{ 
positiontmpcell; 
 if(T==NULL)  
error(“element not found”);  



 

 

else if(X<T-->element) 
 T-->left=delete(X,T-->left);  
Else if(X>T-->element)  
T-->right=delete(X,T-->right); 
Else if(T-->left != NULL && T-->right!=NULL)  
{ 
/* Replace with smallest in right subtree*/ 
 Tmpcell=findmin(T-->right); 
T-->element=tmpcell-->element;  
T-->right=delete(T-->element,T-->right); 
 } 
Else 
 { 
/* One or Zero children*/ 
tmpcell=T; if(T-->left==NULL) 
T=T-->right; 
Else if(T-->right==NULL) T=T-->left;  
Free(tmpcell); 
 } 
Return T; 
} 
 
Applications of Binary Search Trees 

• implementation of a dynamic dictionary. because a dictionary is an 
ordered list that is required to be searched frequently, and is also 
required to be updated (insertion and deletion mode) frequently. So it 
can be implemented by making the entries in a dictionary into the nodes 
of a binary search tree.  

• A more efficient implementation of a dynamic dictionary involves 
considering a key to be a sequence of characters, and instead of searching 
by comparison of entire keys, we use these characters to determine a 
multi-way branch at each step. This will allow us to make a 26-way 
branch according to the first letter, followed by another branch according 
to the second letter and so on. 

 
B-TREES 
A B-tree is a balanced m- ordered multiway search tree, where m > 2.  B-Tree 
of order m can have at most m-1 keys and m children.  



 

 

One of the main reason of using B tree is its capability to store large number of 
keys in a single node and large key values by keeping the height of the tree 
relatively small. 

 
 
Properties of B Tree: 
 

A B tree of order m contains all the properties of an M way tree. In addition, it 
contains the following properties. 

1. Every node in a B-Tree contains at most m children. 

2. Every node in a B-Tree except the root node and the leaf node contain at 
least m/2 children. 

3. The root nodes must have at least 2 nodes. 

4. All leaf nodes must be at the same level. 

5. It is not necessary that, all the nodes contain the same number of 
children but, each node must have m/2 number of nodes. 

 

 



 

 

Operations on B Tree 

Searching : 

Searching in B Trees is similar to that in Binary search tree. For example, if we 
search for an item 49 in the following B Tree. The process will something like 
following: 

1. Compare item 49 with root node 78. since 49 < 78 hence, move to its left 
sub-tree. 

2. Since, 40<49<56, traverse right sub-tree of 40. 

3. 49>45, move to right. Compare 49. 

4. match found, return. 

Insertions 

Insertions are done at the leaf node level. The following algorithm needs to be 
followed in order to insert an item into B Tree. 

1. Traverse the B Tree in order to find the appropriate leaf node at which 
the node can be inserted. 

2. If the leaf node contain less than m-1 keys then insert the element in the 
increasing order. 

3. Else, if the leaf node contains m-1 keys, then follow the following steps. 
• Insert the new element in the increasing order of elements. 
• Split the node into the two nodes at the median. 
• Push the median element upto its parent node. 
• If the parent node also contain m-1 number of keys, then split it too 

by following the same steps. 
Note: 
If M is odd, split the node from the median.   If M is even , then split as right-bias 
or left bias.  
right-bias: The node is split such that its right subtree has more keys than the 
left subtree.  
left-bias: The node is split such that its left subtree has more keys than the right 
subtree. 
 
 
 
 



 

 

 



 

 

 



 

 

 
 

Deletion 

Deletion is also performed at the leaf nodes. The node which is to be deleted 
can either be a leaf node or an internal node. Following algorithm needs to be 
followed in order to delete a node from a B tree. 

1. Locate the leaf node. 



 

 

2. If there are more than m/2 keys in the leaf node then delete the desired 
key from the node. 

3. If the leaf node doesn't contain m/2 keys then complete the keys by 
taking the element from eight or left sibling. 

o If the left sibling contains more than m/2 elements then push its 
largest element up to its parent and move the intervening element 
down to the node where the key is deleted. 

o If the right sibling contains more than m/2 elements then push its 
smallest element up to the parent and move intervening element 
down to the node where the key is deleted. 

4. If neither of the sibling contain more than m/2 elements then create a 
new leaf node by joining two leaf nodes and the intervening element of 
the parent node. 

5. If parent is left with less than m/2 nodes then, apply the above process 
on the parent too. 

If the the node which is to be deleted is an internal node, then replace the node 
with its in-order successor or predecessor. Since, successor or predecessor will 
always be on the leaf node hence, the process will be similar as the node is being 
deleted from the leaf node. 

 

Example: 

Insert the node 8 into the B Tree of order 5 shown in the following image 



 

 

 



 

 

 

 

Application of B tree 

B tree is used to index the data and provides fast access to the actual data stored 
on the disks since, the access to value stored in a large database that is stored 
on a disk is a very time consuming process. 

Searching an un-indexed and unsorted database containing n key values needs 
O(n) running time in worst case. However, if we use B Tree to index this 
database, it will be searched in O(log n) time in worst case. 

Example 2:  

Construct B Tree of order m=5 for the following keys  1, 12, 8, 2, 25, 5, 14, 28, 

17, 7, 52, 16, 48, 68, 3, 26, 29, 53, 55, 45 . State the rules for deletion and Delete 

the keys 8 and 55. 

 

Ans: 



 

 

Insertion:  

 

 
 
 
Deletion:  
 
 
 

B+ Tree 
 

B+ Tree is an extension of B Tree which allows efficient insertion, deletion and 
search operations. 

In B Tree, Keys and records both can be stored in the internal as well as leaf 
nodes. Whereas, in B+ tree, records (data) can only be stored on the leaf nodes 
while internal nodes can only store the key values. 

The leaf nodes of a B+ tree are linked together in the form of a singly linked lists 
to make the search queries more efficient 

 



 

 

 

 

 
 

Threaded Binary Trees- AVL Trees - Heap – Applications of heap. 

 



 

 

Threaded Binary Trees 

The binary tree can have at most two children. But if the tree have only one 
children, or no children, the link part in the linked list representation remains 
null.  In threaded binary tree representation, empty links are reused as threads.  

Types are  

1. Single threaded tree  -  (Left threaded and right threaded)  
2. Fully threaded binary tree 

Single Left threaded tree:  

In this,  if some node has no left child, then the left pointer will point to its 
inorder predecessor. If no predecessor is present, then it will point to header 
node. 

 

Fig: Single Left threaded tree 

Single Right threaded tree: 

In this, if some node has no right child, then the right pointer will point to its 
inorder successor.  If no successor is present, then it will point to header node. 



 

 

 

Fig: Single Right threaded tree 

 

Fully threaded binary tree: 

In fully threaded binary tree, each node has five fields. Three fields like normal 
binary tree node, another two fields to store Boolean value to denote whether 
link of that side is actual link or thread.  

Left Thread Flag Left Link Data Right Link Right Thread Flag 

 

Fig: Fully threaded binary tree 

AVL Trees 
 



 

 

AVL trees, Named after their inventor Adelson, Velski & Landis are height 
balancing binary search tree. AVL tree checks the height of the left and the right 
sub-trees and assures that the difference is not more than 1. This difference is 
called the Balance Factor. 
 
BalanceFactor = height(left-subtree) − height(right-subtree) 
 
Example: The first tree is balanced, and the next two trees are not balanced 
 

 
In the second tree, the left subtree of C has height 2 and the right subtree has 
height 0, so the difference is 2. In the third tree, the right subtree of A has height 
2 and the left is missing, so it is 0, and the difference is 2 again. AVL tree permits 
difference (balance factor) to be only 1. 
 

If the difference in the height of left and right sub-trees is more than 1, the tree 
is balanced using some rotation techniques. 

 

AVL Tree Rotations 

In AVL tree, after performing operations like insertion and deletion we need to 
check the balance factor of every node, If the tree becomes imbalanced due to 
any operation we use rotation operations to make the tree balanced. 

There are four rotations and they are classified into two types. 



 

 

 

Single Left Rotation (LL Rotation) 

In LL Rotation, every node moves one position to left from the current position. 
To understand LL Rotation, let us consider the following insertion operation in 
AVL Tree... 

 

Single Right Rotation (RR Rotation) 

In RR Rotation, every node moves one position to right from the current 
position. To understand RR Rotation, let us consider the following insertion 
operation in AVL Tree... 



 

 

 

Left Right Rotation (LR Rotation) 

The LR Rotation is a sequence of single left rotation followed by a single right 
rotation. In LR Rotation, at first, every node moves one position to the left and 
one position to right from the current position. To understand LR Rotation, let 
us consider the following insertion operation in AVL Tree... 

Right Left Rotation (RL Rotation) 

The RL Rotation is sequence of single right rotation followed by single left 
rotation. In RL Rotation, at first every node moves one position to right and one 
position to left from the current position. To understand RL Rotation, let us 
consider the following insertion operation in AVL Tree... 



 

 

Operations on an AVL Tree 

The following operations are performed on AVL tree... 

1. Search 
2. Insertion 
3. Deletion 

Search Operation in AVL Tree 

In an AVL tree, the search operation is performed with O(log n) time 
complexity. The search operation in the AVL tree is similar to the search 
operation in a Binary search tree. 

Insertion Operation in AVL Tree 

In an AVL tree, the insertion operation is performed with O(log n) time 
complexity. In AVL Tree, a new node is always inserted as a leaf node. The 
insertion operation is performed as follows... 

• Step 1 - Insert the new element into the tree using Binary Search Tree 
insertion logic. 

• Step 2 - After insertion, check the Balance Factor of every node. 
• Step 3 - If the Balance Factor of every node is 0 or 1 or -1 then go for 

next operation. 
• Step 4 - If the Balance Factor of any node is other than 0 or 1 or -1 then 

that tree is said to be imbalanced. In this case, perform 
suitable Rotation to make it balanced and go for next operation. 



 

 

Example: Construct an AVL Tree by inserting numbers from 1 to 8. 

 



 

 

Deletion Operation in AVL Tree 

The deletion operation in AVL Tree is similar to deletion operation in BST. But 
after every deletion operation, we need to check with the Balance Factor 
condition. If the tree is balanced after deletion go for next operation otherwise 
perform suitable rotation to make the tree Balanced. 

 
Heap 
 

Heap data structure is a specialized binary tree-based data structure. In a heap 
data structure, nodes are arranged based on their values. A heap data structure 
also called as Binary Heap. There are two types of heap data structures. 

1. Max Heap 
2. Min Heap 

Every heap data structure has the following properties... 

Property #1 (Ordering): Nodes must be arranged in an order according to 
their values based on Max heap or Min heap. 
Property #2 (Structural): All levels in a heap must be full except the last level 
and all nodes must be filled from left to right strictly. 

Min Heap 

In a Min-Heap the key present at the root node must be minimum among the 
keys present at all of it’s children. The same property must be recursively true 
for all sub-trees in that Binary Tree.  
 

Max Heap 

In a Max-Heap the key present at the root node must be greatest among the 
keys present at all of it’s children. The same property must be recursively true 
for all sub-trees in that Binary Tree. 

 



 

 

 

Operations on Max Heap 

The following operations are performed on a Max heap data structure. 

1. Finding Maximum 
2. Insertion 
3. Deletion 

Finding Maximum Value Operation in Max Heap 

Finding the node which has maximum value in a max heap is very simple. In a 
max heap, the root node has the maximum value than all other nodes. So, 
directly we can display root node value as the maximum value in max heap. 

Insertion Operation in Min Heap 

Note : The procedure to create Max Heap is similar but consider max values 
instead of max values.  

Algorithm for max heap  

Inserting one element at a time, with the following steps,  

Step 1 − Create a new node at the end of heap. 
Step 2 − Assign new value to the node. 
Step 3 − Compare the value of this child node with its parent. 
Step 4 − If value of parent is greater than child, then swap them. 
Step 5 − Repeat step 3 & 4 until Heap property holds. 
 
Insert into a heap the following values in order: 10,6,20,5, 16, 17, 13,2 

We will use smaller values has higher priority as our priority ordering. 



 

 

insert 10: 

 

insert 6: 

 

 
insert 20: 

 
insert 5: 

 



 

 

 
insert 16: 
 

 



 

 

insert 17: 
 

 

 
Repeat the steps for 13 and 2. The final tree is  

 

Delete from a binary heap 

This is the process of removing the highest priority value from the binary heap. 
The deleting an element must ensure  

• complete binary tree structure  



 

 

• heap order property  

is maintained after the removal of an element.  

Deletion Procedure 

• Replace the root or element to be deleted by the last element. 
• Delete the last element from the Heap. 
• Since, the last element is now placed at the position of the root node. So, 

it may not follow the heap property. Therefore, heapify the last node 
placed at the position of root. 

The process of moving the empty spot down the heap is called percolate down. 

 
 



 

 

Applications of Heap 
 
1) Heap Sort: Heap Sort uses Binary Heap to sort an array in O(nLogn) time. 
 
2) Priority Queue: Priority queues can be efficiently implemented using Binary 
Heap because it supports insert(), delete() and extractmax(), decreaseKey() 
operations in O(logn) time. Binomoial Heap and Fibonacci Heap are variations 
of Binary Heap. These variations perform union also efficiently. 
 
3) Graph Algorithms: The priority queues are especially used in Graph 
Algorithms like Dijkstra’s Shortest Path and Prim’s Minimum Spanning Tree. 
 
4) Many problems can be efficiently solved using Heaps. See following for 
example. 
 
a) K’th Largest Element in an array. 
b) Sort an almost sorted array 
c ) Merge K Sorted Arrays. 

 

http://quiz.geeksforgeeks.org/heap-sort/
https://www.geeksforgeeks.org/greedy-algorithms-set-7-dijkstras-algorithm-for-adjacency-list-representation/
https://www.geeksforgeeks.org/greedy-algorithms-set-5-prims-minimum-spanning-tree-mst-2/
https://www.geeksforgeeks.org/k-largestor-smallest-elements-in-an-array/
https://www.geeksforgeeks.org/nearly-sorted-algorithm/
https://www.geeksforgeeks.org/merge-k-sorted-arrays/

