REGULATION: 2017 EC8095

VLSI DESIGN

ACADEMIC YEAR: 2020-2021 LTPC 3003

OBJECTIVES:

- Study the fundamentals of CMOS circuits and its characteristics
- Learn the design and realization of combinational & sequential digital circuits.
- Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology are discussed
- Learn the different FPGA architectures and testability of VLSI circuits.

UNIT I INTRODUCTION TO MOS TRANSISTOR

MOS Transistor, CMOS logic, Inverter, Pass Transistor, Transmission gate, Layout Design Rules, Gate Layouts, Stick Diagrams, Long-Channel I-V Charters tics, C-V Charters tics, Non ideal I-V Effects, DC Transfer characteristics, RC Delay Model, Elmore Delay, Linear Delay Model, Logical effort, Parasitic Delay, Delay in Logic Gate, Scaling

UNIT II COMBINATIONAL MOS LOGIC CIRCUITS

Circuit Families: Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dynamic Circuits, Pass Transistor Logic, Transmission Gates, Domino, Dual Rail Domino, CPL, DCVSPG, DPL, Circuit Pitfalls. Power: Dynamic Power, Static Power, Low Power Architecture.

UNIT III SEQUENTIAL CIRCUIT DESIGN

Static latches and Registers, Dynamic latches and Registers, Pulse Registers, Sense Amplifier Based Register, Pipelining, Schmitt Trigger, Monostable Sequential Circuits, Astable Sequential Circuits. Timing Issues : Timing Classification Of Digital System, Synchronous Design.

9 UNIT IV DESIGN OF ARITHMETIC BUILDING BLOCKS AND SUBSYSTEM Arithmetic Building Blocks: Data Paths, Adders, Multipliers, Shifters, ALUs, power and speed tradeoffs, Case Study: Design as a tradeoff. Designing Memory and Array structures: Memory Architectures and Building Blocks, Memory Core, Memory Peripheral Circuitry. 9

UNIT V IMPLEMENTATION STRATEGIES AND TESTING

FPGA Building Block Architectures, FPGA Interconnect Routing Procedures. Design for Testability: Ad Hoc Testing, Scan Design, BIST, IDDQ Testing, Design for Manufacturability, Boundary Scan. **OUTCOMES:**

- Realize the concepts of digital building blocks using MOS transistor.
- Design combinational MOS circuits and power strategies. •
- Design and construct Sequential Circuits and Timing systems. •
- Design arithmetic building blocks and memory subsystems. •
- Apply and implement FPGA design flow and testing.

TEXT BOOKS:

- 1. Neil H.E. Weste, David Money Harris -CMOS VLSI Design: A Circuits and Systems Perspective, 4th Edition, Pearson, 2017 (UNIT I,II,V)
- 2. Jan M. Rabaey ,Anantha Chandrakasan, Borivoje. Nikolic, IDigital Integrated Circuits:A Design perspective, Second Edition, Pearson, 2016. (UNIT III, IV)

REFERENCES:

- 1. M.J. Smith, Application Specific Integrated Circuits, Addisson Wesley, 1997
- 2. Sung-Mo kang, Yusuf leblebici, Chulwoo Kim CMOS Digital Integrated Circuits: Analysis & Design 4th edition McGraw Hill Education, 2013
- 3. Wayne Wolf, -- Modern VLSI Design: System On Chipl, Pearson Education, 2007 R.Jacob Baker, Harry W.LI., David E.Boyee, -CMOS Circuit Design, Layout and Simulation, Prentice Hall of India 2005.

9

9

REGULATION : 2017 Subject Code: EC8095 Subject Name: VLSI DESIGN

ACADEMIC YEAR : 2020-2021 Year/Semester: III /06 Subject Handler : Dr.R.Uma

UNIT I – MOS TRANSISTOR PRINCIPLE

MOS Transistor, CMOS logic, Inverter, Pass Transistor, Transmission gate, Layout Design Rules, Gate Layouts, Stick Diagrams, Long-Channel I-V Charters tics, C-V Charters tics, Non ideal I-V Effects, DC Transfer characteristics, RC Delay Model, Elmore Delay, Linear Delay Model, Logical effort, Parasitic Delay, Delay in Logic Gate, Scaling.

PART * A			
Q.No.	Questions		
	What are the advantages CMOS techno	logy? (April/May2019) BTL2	
	• Low power consumption		
1.	• High performance		
	• Scalable threshold voltage		
	• High noise margin		
	• Low output drive current		
	Distinguish between nMOS and pMOS	devices. (April/May2019) BTL2	2
	nMOS	pMOS	
	In nMOS, electrons are the majority	In pMOS, majority carriers	are
•	carriers. When positive voltage is	holes.	
2.	applied on gate, no. of electrons will		
	increased	V	
	Switching speed is high since the	Switching groad is low since	a the
	mobility of electron is high	mobility of hole is low	
	nMOS conducts at logic 1.	pMOS conducts at logic 0.	
	What is meant by body effect? (Novemb	er/December 2019) BTL1	
3.	$V_{\rm t}$ is not constant with respect to volt	age difference between subst	rate and source of
transistor. This is known as body effect. It is otherwise known		. It is otherwise known as subs	strate-bias effect.
	What is velocity saturation? (November	/December 2019) BTL1	
4	The saturation current increases less than	quadratically with increasing V	gs .Tis is caused by
4.	two effects velocity saturation and mobility degradation. At high electric fields strengths V_{ds}/L		
	carrier velocity ceases to increase linearly with field strength. This is called velocity saturation		
	and results in lower I_{ds} , than expected at high V_{ds} .		
	Define inversion layer. (November/Dece	moer 2018) BILI	maliad it attracts
5.	when a higher positive potential greater than critical threshold is applied, it attracts		
	of free electrons in the body are at	tracted to the region beneat	the date This
	conductive layer of electrons in the p ty	the hody is called inversion lay	n nie gale. Tills
6	Define Noise Margin (November/Decen	her 2018) BTI 1	y01.
0.	Noise margin represents the amount of noise voltage on the input of a gate so that the output		e so that the output
	JIT-JEPPIAAR/ECE/Dr.R.Uma/III rd Yr/SEM 06 /EC	8095/VLSI DESIGN/UNIT 1-5/OB+Kevs/V	Ver2.0

	will not be corrupted. It is closely relating to the dc characteristics and it is also known as		
	noise immunity.		
	There are two parameters		
	 Low noise margin-NM_L 		
	 High noise margin-NM_H 		
	Give the expression for rise time and fall time in CMOS inverter circuit.		
	(April/May2019) BTL2		
	Rise time:		
-	The time needed for v_{out} to rise from 0.1 v_{dd} to 0.9 v_{dd} is called rise time.		
7.	$t_r = \ln(9) \tau_p$		
	$t_r = 2.2 t_p$		
Fall time:			
	t = $\ln(9)\tau$		
	$t_f = 2.2 \tau_c$		
	What are the steps involved in manufacturing of IC? (April/May2019) BTL2		
	The steps are		
	 Wafer preparation 		
0	 Epitaxial growth 		
8.	 Oxidation 		
	 Photo lithography 		
	 Diffusion and Ion implantation 		
	 Isolation 		
	 Metallization 		
9	What is photo lithography? BTL1		
).	The patterning is achieved by a process called photolithography. In areas where the mask is		
	absent, the implantation can occur, or dielectric or metal could be etched away.		
10.	What is CMOS technology? BTL1		
	complementary Metal Oxide Semiconductor (CMOS) in which both n-channel MOS and p-		
	What are the advantages of CMOS ever NMOS technology? PTL 2		
• In CMOS technology the aluminum setes of the transistors are replaced by a			
11.	• In civios technology the artifinitum gates of the transistors are replaced by poly sincon gate		
	 The main advantage of CMOS over NMOS is low power consumption 		
	• In CMOS technology the device sizes can be easily scalable than NMOS		
	What are the advantages of CMOS technology?RTL?		
	• Low power consumption		
12	• High performance		
12.	• Scalable threshold voltage		
	• High noise margin		
	• Low output drive current		
	What are the disadvantages of CMOS technology? BTL2		
13.	• Low resistance to process deviations and temperature changes		
	• Low switching speed at large values of capacitive loads		
	What is latch-up condition in CMOS circuits? BTL4		
14.	Latch-up is a condition which creates a short circuit from positive supply voltage to ground.		
	Latch-up is a condition occurs when:		

REGUL	ATION: 2017 ACADEMIC YEAR: 2020-2021
	• The parasitic components give rise to the establishment of low resistance conducting path between VDD and GND
	The product of the going of the two transistors $(n \text{ and } n)$ in the feedback loop, $h_1 \times h_2$ is
	• The product of the gains of the two transistors (if and p) in the reedback loop, bix b2 is greater than one.
	How to prevent latch up? (May/June 2016)BTI /
15.	Reduce the gain product b1x b2
	Reduce the well and substrate resistances
	What are the system annroaches to prevent latch-up? BTI 2
	By using proper grounding technique
16	By using decoupling capacitors at the supply pins of the IC
10.	By placing a reversed-biased diode between each supply rail and the I/O pins
	By placing series resistance to limit the fault current to a safe value
	Carefully protect electrostatic protection devices associated with I/O pads with guard rings
	What is design rule? BTL1
	Design rules are the communication link between the designer specifying requirements and the
17	fabricator who materializes them. The design rule conform to a set of geometric constraints or
17.	rules specify the minimum allowable line widths for physical objects on-chip such as metal
	and poly silicon interconnects or diffusion area, minimum feature dimensions and minimum
	allowable separations between two layers.
10	What is stick diagram? (Nov/Dec 2014) BTL1
18.	Stick diagram are the key element of designing a circuit used to convey layer information
	through the use of a color code.
	What is micron design rule? BTL1
19.	Micron rules specify the layout constraints such as minimum feature sizes and minimum
	allowable feature separations are stated in terms of absolute dimensions in micrometers.
What is lambda design rule? (April/May 2015) BTL1	
20.	Lambda rules specify the layout constraints such as minimum feature sizes and minimum
20.	allowable feature separations are stated in terms of a single parameter λ and thus linear.
	proportional scaling of all geometrical constraints.
	What is DRC? BTL1
21.	Design rule check program looks for design rule violations in the layout. It checks for
	minimum spacing and minimum size and ensures that combinations of layers form legal
	components.
	What is LVS? BTL1
22.	The process of comparing two networks is called Layout Versus Schematic or netlist
	comparison or network isomorphism. This is used to prove that a layout is equivalent to a
	network extracted from schematic or HDL structural netlist.
	Mention MOS transistor characteristics. BTL4
22	Metal Oxide Semiconductor is a three terminal device having source, drain and gate. The
23.	resistance path between the drain and source is controlled by applying a voltage to the gate.
	The normal conduction characteristics of an MOS transistor can be categorized as Cut off
	region, Non-saturated region and saturated region.
24.	What is threshold voltage? BTL1
	It is defined as the minimum voltage at which the device starts conduction (ie.,) turns on.
25.	What are the different operating modes of MOS transistor? BTL2
	• Accumulation mode

	Depletion mode			
	Inversion mode			
	What is accumulation mode? BTL2			
26.	When the gate to source voltage (Vgs) is much less than the threshold voltage (Vt) then it is			
	termed as the accumulation mode. There is no conduction between source and drain. The			
	device is turned off.			
	What is depletion mode? BTL2			
27.	When the gate to source voltage (Vgs) is increased greater than the threshold voltage (Vt) the			
	electrons are attracted towards the gate while the holes are repelled causing a depletion region			
	under the gate. This is called depletion mode.			
	What is inversion mode? BTL2			
•	When Vgs is raised above the Vt the electrons are attracted to the gate region. Under such a			
28.	condition the surface of the underlying p-type silicon is said to be inverted to n-type and			
	provides a condition paths between source and drain. The device is turned on. This is called			
	inversion mode.			
	What are the three operating regions of MOS transistor? BTL?			
20	Cut-off region			
29.	Non Saturated Region			
	Saturated Dagion			
30.	The region where the current flow is acceptically zero is called out off region			
	The region where the current now is essentially zero is called cut-off region.			
	$las=0, vgs \leq vt$			
0.1	What is saturated region?BTL1			
31.	What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source			
31.	What is saturated region? BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region.			
31.	What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0 <vgs-vt<vds< td=""></vgs-vt<vds<>			
31.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage </vgs-vt<vds<>			
31.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds< li=""> </vds<></vgs-vt<vds<>			
31.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 </vds<vgs-vt<></vgs-vt<vds<>			
31.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain </vds<vgs-vt<></vgs-vt<vds<>			
31.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility What are the functional parameters of threshold equation? BTL2 </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility What are the functional parameters of threshold equation? BTL2 </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility What are the functional parameters of threshold equation? BTL2 Gate conductor material Gate insulator material </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33. 34.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility What are the functional parameters of threshold equation? BTL2 Gate conductor material Gate insulator thickness- channel doping </vds<vgs-vt<></vgs-vt<vds<>			
31.32.33.34.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain -source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility What are the functional parameters of threshold equation? BTL2 Gate conductor material Gate insulator thickness- channel doping Impurities at the silicon- insulator interface </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33. 34.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility What are the functional parameters of threshold equation? BTL2 Gate conductor material Gate insulator thickness- channel doping Impurities at the silicon- insulator interface Voltage between the source and the substrate, Vsb </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33. 34.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain –source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility What are the functional parameters of threshold equation? BTL2 Gate conductor material Gate insulator thickness- channel doping Impurities at the silicon- insulator interface Voltage between the source and the substrate, Vsb How the threshold voltage can be varied? BTL3 </vds<vgs-vt<></vgs-vt<vds<>			
31. 32. 33. 34. 35.	 What is saturated region?BTL1 Channel is strongly inverted and the drain current flow is ideally independent of drain-source voltage is called saturated region. 0<vgs-vt<vds< li=""> What is Non-saturated region? BTL1 Weak inversion region where the drain current is dependent on the gate and the drain voltage is called non saturated region. 0<vds<vgs-vt< li=""> What are the parameters that effect the magnitude of drain -source current Ids? BTL2 The distance between source and drain The channel length The threshold voltage The thickness of the gate oxide layer The dielectric constant of the gate insulator The carrier mobility What are the functional parameters of threshold equation? BTL2 Gate conductor material Gate insulator thickness- channel doping Impurities at the silicon- insulator interface Voltage between the source and the substrate, Vsb How the threshold voltage may be varied by changing </vds<vgs-vt<></vgs-vt<vds<>			

REGUL	ATION : 2017 ACADEMIC YEAR : 2020-2021
	• The oxide capacitance (C_{ox})
	• Surface state charge (Q_{fc})
	What are the common methods used to adjust threshold voltage?BTL2
36.	• Change Q _{fc} by introducing a small doped region at the oxide/ substrate interface via ion
	implantation
	• Change C _{ox} by using a different insulating material for the gate
37.	What is body effect? (Nov/Dec 2016) BTL2
	The threshold voltage V_t is not constant with respect to voltage difference between source and
	substrate is called body effect.
	What are the second order effects of MOS transistor? BTL1
	Threshold voltage- body effect
20	Sub threshold current
30.	Channel length modulation
	Mobility variation
	Impact Ionization
	Velocity Saturation
20	What is sub threshold current? BTL2
39.	The cut-off region described by Ids=0, Vgs≤Vt is also referred to as the sub threshold region,
	where Ids=0 increases exponentially with Vds and Vgs.
	What is channel length modulation? (May/June 2016), (April / May 2017)BTL2
40.	The increase of the depletion layer width at the drain as the drain voltage is increased. This
	leads to a shorter channel length and an increased current is called Channel length modulation
	in a MOS.
41.	What is mobility variation? B1L2
	The mobility is defined as the ratio of average carrier drift velocity to the electric field
	Intensity. What is durin much through 2 DTL 2
40	When the drain is at a high anough voltage with respect to the source, the deplotion layer
42.	around the drain and source regions merge into a single depletion region thus causing current
	to flow irrespective of the gate voltages. This is known as punch through effect
	What is impact ionization? BTL?
	When the length of the gate is reduced the electric field at the drain of a transistor in
43	saturation increases. For submicron gate lengths, the field can become so high that electron is
15.	imparted with enough energy to become "hot". The hot electrons impact the drain, dislodging
	holes that are swept towards the negatively charged substrate and appear as a substrate current.
· ·	This effect is known as impact ionization.
	What is SPICE? BTL1
44.	The acronym SPICE stands for Simulation Program with Integrated Circuit Emphasis is a
	general purpose circuit program that simulates electronic circuits.
45.	Compare CMOS and Binolar technologies (Nov/Dec 2013) BTI 4
	Compare Civios and Dipolar (Chilologies, (NOV/Dec 2013) D1L+

REGULATION : 2017 ACADEMIC YEAR : 2020-2021			ACADEMIC YEAR : 2020-2021
	S.No.	CMOS Technology	Bipolar Technology
	1.	Low static power dissipation	High power dissipation
	2.	High input impedance	Low input impedance
	3.	High packing density	Low packing density
	4.	Low output drive current	High output drive current
	5.	Drain and source are interchangeable	It is unidirectional
	6.	High noise margin	Low voltage swing logic
	Define n	oise margin (May/June 2014) Illustrate h	w it can be obtained from the transfer
	characte	eristics of a CMOS Inverter. (Nov/Dec 2010)	6) BTL4
	Noise ma	argin is a parameter that allows us to determine	ne the allowable noise voltage on the
	input of a	a gateso that the output will not be affected. T	The 2 common parameters are NMH &
46.	NML Where		
	NML =	VILmax – VOLmax and NMH = VOHmin	I – VIHmin
	VIHmin	minimum HIGH input voltage=	
	VILmax	= maximum LOW i/p voltage	
	VOHmir	n = minimum HIGH o/p voltage	
	VOLmax D:	$x = \max(\max LOW o/p voltage)$	
	The two	main approaches for describing layout rule	(i) migron rule (ii) u hasad rules
47.	Micron	design rules give a list of minimum feature	re sizes and spacing for all the masks
	where the sign rules give a list of minimum feature sizes and spacing for all the matrix required in a given process λ_{-} based design types are based on a single parameter λ_{-}^{2} w		e based on a single parameter. ' λ ' which
	character	izes the linear feature- the resolution of the c	omplete wafer implementation process
	Draw the DC transfer characteristics of CMOS inverter? (Nov/Dec 2013), (April/May		
	2015) BT	ГL2	
	V		
	out		
	Vdd		
	VOH		
18		V IN = VOLIT	
+0.			
	1000		
	Vol		
		V. V. V.	
	DOT		
	DC Transfer Characteristics		
	VIH: mi	nimum HIGH input voltage, VIL: maximum	LOW input voltage, VOH: minimum
	Dofino e	coling? (Nov/Dec 2013) (April/May 2015)	BTI 2
10	Scaling of	of MOS transistor is concerned with systematic	tic reduction of overall dimensions of the
49.	devices a	as allowed by the available technology while	e preserving the geometric ratios found in
	the large	r devices.	preserving the geometric ratios round in
	What is	propagation delay time tpd? / Define prop	agation delay of a CMOS inverter.
50	(May/Ju	ne 2014), (May/June 2016), (April / May 2	2017) BTL2
50.	It is the	maximum time from the input crossing 50°	% to the output crossing 50%. It is also
	called as	Maxtime.	
	High-to-	Low propagation delay (tpHL): Time taken to	o fall from VOH to 50%.

	Answer: Page 1.14-1.18 and 1.56- 1.68- Dr.R.Uma
	MOS DC Equations- Cut-off mode- Non-saturated or Linear mode- Saturated mode (4M)
	Non ideal IV characteristics- Threshold voltage- minimum voltage at which the device
	starts conduction
	Body effect- The threshold voltage V_t is not constant with respect to voltage difference
	between source and substrate
	Sub threshold conduction - The cut-off region described by Ids=0. Vgs <vt -="" sub="" th="" threshold<=""></vt>
	region, where $Ids=0$ increases exponentially with Vds and Vgs.
	Channel length modulation . The increase of the depletion layer width at the drain as the
	drain voltage is increased. This leads to a shorter channel length and an increased current is
	called Channel length modulation in a MOS
	Mobility variation - ratio of average carrier drifts velocity to the electric field intensity
	Drain nunch through. When the drain is at a high enough voltage with respect to the source
	the depletion layer around the drain and source regions merge into a single depletion region
	the depiction rayer around the dram and source regions merge into a single depiction region thus causing current to flow irrespective of the gate voltages
	Impact ionization . When the length of the gate is reduced the electric field at the drain of a
	transister in saturation increases. For submission gets lengths, the field can become so high that
	alastron is imported with enough energy to become "het". The bet electrons import the drain
	dialodging holes that are swent towards the negatively shared substrate and encours as
	disioning noises that are swept towards the negativery charged substrate and appear as a
	substrate current.
	Drain induced barrier lowering- lunneling-velocity saturation and mobility degradation-
	Junction leakage- Temperature dependence- Geometry Dependence (9M)
	Explain the electrical properties of MOS transistor in detail (13M) (Nov/Dec 2013) B1L3
	Answer: Page 1.11-1.68-Dr.R.uma
	Electrical Properties- Threshold Voltage- Threshold voltage equations-Body effect (2M)
	MOS DC Equations- Cut off- Ids=0, Vgs≤ Vt –Saturated-0 <vgs-vt<vds -non-saturated-<="" th=""></vgs-vt<vds>
	0 < V ds < V gs - V t (2M)
	Small Signal AC Characteristics -Voltage gain-Figure of merit (2M)
3.	MOS Capacitances-Simple MOS capacitance model-Detailed MOS Capacitance model-
	MOS Device Capacitance (2M)
	MOS Resistance-Resistance of Non-rectangular Regions-Contact and via Resistance-
	Distributed RC effect-Wire length Design Guide- (1M)
	Inductance- Non-Ideal I-V Characteristics of MOS-Threshold voltage- Body effect- Sub
	threshold conduction- Channel length modulation- Mobility variation- Drain punch through-
	Impact ionization- Drain induced barrier lowering- Tunneling-Velocity saturation and mobility
	degradation- Junction leakage- Temperature dependence- Geometry Dependence (4M)
	Briefly discuss about the CMOS process enhancements and layout design rules.(13M)
	(May/June 2014) BTL2
4.	Answer: Page 1.99-1.105-Dr.R.Uma
	Micron Rules-Features-CMOS layout Rules (6M)
	Lambda Based Design Rules-Features-Transistor design rules for nMOS, pMOS and CMOS
	(7M)
	Discuss the CV characteristics and DC transfer characteristics of the CMOS. (13M)
	(May/June2014) BTL4
5.	Answer: Page 1.31-1.38 &1.82-1.86-Dr.R.Uma
	MOS Capacitances-Simple MOS capacitance model-Detailed MOS Capacitance model-
	MOS Device Capacitance (4M)
	CMOS Inverter - Diagram-Circuit-Operation (2M)

REGUL	LATION: 2017 ACADEMIC YEAR: 202	0-2021
	CMOS Inverter DC Characteristics- Cut off- Ids=0, Vgs Vt –Saturated-0 <vg< th=""><th>gs-Vt<vds -<="" th=""></vds></th></vg<>	gs-Vt <vds -<="" th=""></vds>
	Non-Saturated-0 <vds<vgs-vt< th=""><th>(3M)</th></vds<vgs-vt<>	(3M)
	CMOS Inverter DC transfer and operating regions- Diagram-Region A-Region	n B-Region
	C-Region D-Region E	(4M)
	Explain in detail about the scaling concept of CMOS chips.(13M) (May/June2	013) BTL4
	Answer: Page 1.80-1.81 -Dr.R.Uma	,
	Constant field Scaling- Largest reduction in power delay product of single transist	or (3M)
6.	Constant voltage scaling- Voltage compatibility with older circuits	(3M)
	Comparison of the effect of scaling on MOSFET devices- Gate length- Gate w	vidth- Field-
	Oxide Thickness- Substrate doping- Gate capacitance-Oxide capacitance- Transit ti	me- Transit
	frequency- Voltage- Current- Power- Power-delay	(7M)
	Describe the equation for source to drain current in the three regions of ope	eration of a
	MOS transistor and draw the VI characteristics.(13M) (May/June 2016) BTL4	
	Answer: Page 1.80-1.81 -Dr.R.Uma	
7	MOS DC Equations- Cut off mode-Non Saturated mode-Saturated mode	(2M)
,.	Cut off Mode: Sub threshold Mode-Weak inversion current- Sub threshold leakage	e (3M)
	Non-Saturated Mode - Transit time- Electric Field- Trans-conductance- Dev	vice Trans-
	conductance	(5M)
	Saturated Mode- Channel created	(3M)
	Explain in detail about the body effect and its effect in NMOS and PMOS dev	ices. (13M)
	(May/June 2013) (May/June 2016) BTL3	
	Answer: Page 1.13-1.32 -Dr.R.Uma	
	Normal condition depletion layer width remains constant and charge carriers are	pulled into
8.	the channel from the source	(3M)
	Substrate bias increased- width of the channel substrate depletion layer increase	es results in
	increase in the density of the trapped carriers in the depletion layer	(4M)
	nMOS enhancement mode Transistor	(3M)
	nMOS depletion mode Transistor	(3M)
	Explain in detail about Device models.(13M) (May/June 2014) BTL2	
	Answer: Page 1.75-1.80 -Dr.R.Uma	
	Device Models- Types of Models	
	Level 1 model- VTO, KP, LAMBDA, PHI and GAMMA	(2M)
	Level 2 Model- Bulk Depletion charge must be calculated by taking into	account its
9.	dependence on the channel voltage.	(2M)
	Level 3 Model- Empirical equations instead of analytical models are both to i	mprove the
	accuracy of the model	(2M)
	BSIM Model- Berkeley short-channel IGFET model – based on small parameter	s- accuracy
	and efficiency	(3M)
	Diffusion Capacitance Model-parasitic capacitance of the source and drain diffus	sion regions
	are simulated in SPICE with the simple pn-junction model.	(4M)
	PART * C	
	Draw the layout diagram for NAND and NOR gate. (15M) (May/June 2017)B	rL5
1.	Answer: Page 1.108-1.109- Dr.R.Uma	
	Static CMOS Diagram for both NAND and NOR Gate	(2+2)M
	Stick Diagram for both NAND and NOR Gate	(2+2)M
	Layout Diagram based on Design Rules for both NAND and NOR Gate	(2+2)M
	Coloring based on Design Rules for both NAND and NOR Gate	(3M)

	Explain the various steps involved in the P-well CMOS process with necessary				
	diagrams. (15M) (Nov'2012)BTL2				
	Answer: Page 11-13 - N.Weste, K.Eshraghian				
	Step 1 : A thin layer of SiO_2 is deposited which will serve as the pad oxide. (1M)				
	Step 2 : A thicker sacrificial silicon nitride layer is deposited by chemical vapour deposition				
	(CVD). (1M)				
	Step 3 : A plasma etching process is used to create trenches used for insulating the devices.				
	(1M)				
	Step 4 : The trenches are filled with SiO_2 which is called as the field oxide. (1M)				
	Step 5 : To provide flat surface chemical mechanical planarization is performed and also				
	sacrificial nitride and pad oxide is removed. (1M)				
2.	Step 6 : The p-well mask is used to expose only the p-well areas, after this implant and				
	annealing sequence is applied to adjust the well doping. This is followed by a second implant				
	step to adjust the threshold voltage of the NMOS transistor. (1M)				
	Step 7 : Implant step is performed to adjust the threshold voltage of PMOS transistor. (1M)				
	Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with				
	the help of polysilicon mask (1M)				
	Step 9 : Ion implantation to dope the source and drain regions of the PMOS (n^+) and NMOS				
	(n^+) transistors this will also form n^+ polysilicon gate and n^+ polysilicon gate for NMOS and				
	PMOS transistors respectively. Hence this process is called as self aligned process (1M)				
	Step 10 : Then the oxide and nitride spacers are formed by chemical vapour deposition (1M)				
	Step 11 : In this step contact or via holes are etched metal is deposited and patterned. After				
	the deposition of last metal layer final passivation or overglass is deposited for protection (1M)				
	Diagram (2M)				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams.				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M)				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition(CVD).(1M)				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition(CVD).(1M)Step 3 : A plasma etching process using the complementary of the active area mask to create				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition(CVD).(1M)Step 3 : A plasma etching process using the complementary of the active area mask to createtrenches used for insulating the devices.(1M)				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition(CVD).(1M)Step 3 : A plasma etching process using the complementary of the active area mask to createtrenches used for insulating the devices.(1M)Step 4 : The trenches are filled with SiO2 which is called as the field oxide.(1M)				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition(CVD).(1M)Step 3 : A plasma etching process using the complementary of the active area mask to createtrenches used for insulating the devices.(1M)Step 4 : The trenches are filled with SiO ₂ which is called as the field oxide.(1M)Step 5 : To provide flat surface chemical mechanical planarization is performed and also				
	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M) Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M) Step 4 : The trenches are filled with SiO ₂ which is called as the field oxide. (1M) Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M)				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD).(1M)Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices.(1M)Step 4 : The trenches are filled with SiO2 which is called as the field oxide.(1M)Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed.(1M)Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M) Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M) Step 4 : The trenches are filled with SiO ₂ which is called as the field oxide. (1M) Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M) Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M) Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M) Step 4 : The trenches are filled with SiO ₂ which is called as the field oxide. (1M) Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M) Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor.				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M) Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M) Step 4 : The trenches are filled with SiO ₂ which is called as the field oxide. (1M) Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M) Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor. (1M) Step 7 : Implant step is performed to adjust the threshold voltage of NMOS transistor. (1M)				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition(CVD).(1M)Step 3 : A plasma etching process using the complementary of the active area mask to createtrenches used for insulating the devices.(1M)Step 5 : To provide flat surface chemical mechanical planarization is performed and alsosacrificial nitride is removed.(1M)Step 6 : The n-well mask is used to expose only the n-well areas, after this implant andannealing sequence is applied to adjust the well doping. This is followed by second implantstep to adjust the threshold voltage of the PMOS transistor.(1M)Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M) Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M) Step 4 : The trenches are filled with SiO ₂ which is called as the field oxide. (1M) Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M) Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor. (1M) Step 7 : Implant step is performed to adjust the threshold voltage of NMOS transistor. (1M) Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with the help of polysilicon mask. (1M)				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M) Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M) Step 4 : The trenches are filled with SiO ₂ which is called as the field oxide. (1M) Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M) Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor. (1M) Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with the help of polysilicon mask. (1M) Step 9 : Ion implantation to dope the source and drain regions of the PMOS (p ⁺) and NMOS				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD).(1M)Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices.(1M)Step 4 : The trenches are filled with SiO2 which is called as the field oxide.(1M)Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed.(1M)Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor.(1M)Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with the help of polysilicon mask.(1M)Step 9 : Ion implantation to dope the source and drain regions of the PMOS (p ⁺) and NMOS (n ⁺) transistors, this will also form n ⁺ polysilicon gate and p ⁺ polysilicon gate for NMOS and				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide. (1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M)Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M)Step 4 : The trenches are filled with SiO2 which is called as the field oxide. (1M)Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M)Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor. (1M)Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with the help of polysilicon mask. (1M)Step 9 : Ion implantation to dope the source and drain regions of the PMOS (p ⁺) and NMOS (n ⁺) transistors, this will also form n ⁺ polysilicon gate and p ⁺ polysilicon gate for NMOS and PMOS transistors respectively. Hence this process is called as self aligned process. (1M)				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams.(15M) (Nov'2012)BTL2Answer: Page 9-11- N.Weste, K.EshraghianStep 1 : A thin layer of SiO2 is deposited which will serve as a the pad oxide.(1M)Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD).(1M)Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices.(1M)Step 4 : The trenches are filled with SiO2 which is called as the field oxide.(1M)Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed.(1M)Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor.(1M)Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with the help of polysilicon mask.(1M)Step 9 : Ion implantation to dope the source and drain regions of the PMOS (p ⁺) and NMOS (n ⁺) transistors, this will also form n ⁺ polysilicon gate and p ⁺ polysilicon gate for NMOS and PMOS transistors respectively. Hence this process is called as self aligned process.(1M)Step 6 : The n-well mask.(1M)Step 7 : Implant step is performed to				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M) Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M) Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M) Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor. (1M) Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with the help of polysilicon mask. (1M) Step 9 : Ion implantation to dope the source and drain regions of the PMOS (p ⁺) and NMOS (n ⁺) transistors, this will also form n ⁺ polysilicon gate and p ⁺ polysilicon gate for NMOS and PMOS transistors respectively. Hence this process is called as self aligned process. (1M) Step 10 : Then the oxide or nitride spacers are formed by chemical vapour deposition. (1M)				
3	Explain the various steps involved in the n-well CMOS process with necessary diagrams. (15M) (Nov'2012)BTL2 Answer: Page 9-11- N.Weste, K.Eshraghian Step 1 : A thin layer of SiO ₂ is deposited which will serve as a the pad oxide. (1M) Step 2 : Deposition of a thicker sacrificial silicon nitride layer by chemical vapour deposition (CVD). (1M) Step 3 : A plasma etching process using the complementary of the active area mask to create trenches used for insulating the devices. (1M) Step 5 : To provide flat surface chemical mechanical planarization is performed and also sacrificial nitride is removed. (1M) Step 6 : The n-well mask is used to expose only the n-well areas, after this implant and annealing sequence is applied to adjust the well doping. This is followed by second implant step to adjust the threshold voltage of the PMOS transistor. (1M) Step 8 : A thin layer of gate oxide and polysilicon is chemically deposited and patterned with the help of polysilicon mask. (1M) Step 9 : Ion implantation to dope the source and drain regions of the PMOS (p ⁺) and NMOS (n ⁺) transistors, this will also form n ⁺ polysilicon gate and p ⁺ polysilicon gate for NMOS and PMOS transistors respectively. Hence this process is called as self aligned process. (1M) Step 10 : Then the oxide or nitride spacers are formed by chemical vapour deposition. (1M)				

UNIT II – COMBINATIONAL LOGIC CIRCUITS

Circuit Families: Static CMOS, Ratioed Circuits, Cascode Voltage Switch Logic, Dynamic Circuits, Pass Transistor Logic, Transmission Gates, Domino, Dual Rail Domino, CPL, DCVSPG, DPL, Circuit Pitfalls. Power: Dynamic Power, Static Power, Low Power Architecture.

PART * A			
Q.No.	Questions		
1.	What are the short falls of pass transistor logic? (Nov/Dec 2019) BTL1 The short fall associated with PTL is threshold variation (or) threshold drop. An NMOS device is effective at passing a 0, but it is poor at pulling a node to VDD. When the pass-transistor pulls a node high, the output only charges to VDD – Vtn. The output voltage will also gets affected when the source-to-body voltage is present (body effect).		
2.	What is complementary pass transistor logic? (Nov/Dec 2019) BTL 1 CPL is an alternative structure to eliminate threshold variation. The main concept behind CPL is the use of only an nMOS network for the implementation of logic functions. This results in low input capacitance and high speed operation. It consists of nMOS pass transistor logic network driven by two sets of complementary inputs and CMOS inverter used as buffers.		
3.	 What are the two methods of restoration in PTL? (April/May 2019) BTL1 1. The first method consist of single pMOS transistor connected in feedback path. (ie) cross coupled feedback. 2. The second restoration method utilizes pMOS gate connected to the output of inverter. 		
4.	What is swing-restored pass transistor logic? (April/May 2019) BTL1 It is an alternate configuration for PTL to eliminate threshold drop. In SRPL the output inverters are cross- coupled like a latch structure, which performs both swing restoration and output buffering.		
5.	What is the advantages of multiple threshold transistors. (Nov/Dec 2018) BTL1 The threshold problem in pass transistors can be reduced using multiple threshold transistors. The primary goal of multiple threshold voltage circuits is to selectively scale the threshold voltages together with the supply voltage in order to enhance speed without increasing the subthreshold leakage current.		
6.	What are the limitations of multiple threshold transistor? (Nov/Dec 2018) BTL1 The primary disadvantage of using multiple threshold transistors, has impact on the power consumption due to subthreshold current flowing through the pass transistors, even if <i>Vgs</i> is below <i>Vt</i> . The subthreshold leakage is not significant in the critical paths when the device is constantly switching but produces negative impact when the device is idle.		
7.	What is pass transistor logic? (April/May 2018) BTL1 It is a MOS transistor, in which gate is driven by a control signal, the source (out), the drain of the transistor is called constant or variable voltage potential (in). When the control signal is high, input is passed to the output and when the control signal is low, the output is in high impedance (floating).		
8.	List the advantages of pass transistor logic. (April/May 2018) BTL2 1. PTL circuits are often superior to standard CMOS circuits in terms of layout density, circuit delay and power consumption. 2. They do not have a path to GND and do not dissipate standby power (static power dissipation)		
9.	What is transmission gate? BTL1 The circuit constructed with the parallel connection of PMOS and NMOS with shorted drain and		

REC	GULATION: 2017 ACADEMIC YEAR: 2020-2021		
	source terminals. The gate terminal uses two select signals s and $s(bar)$ then the transmission gate		
	passes the signal from input to output. When s is low then the circuit enters into high impedance		
	state.		
	Write the application of TG. BTL2		
10.	• Multiplexing element or path selector		
	• A latch element		
	• An Analog switch		
	• Act as a voltage controlled resistor connecting the input and output.		
List the Important properties of static CMOS design. BTL2			
	• At any instant of time, the output of the gate is directly connected to VSS or VDD.		
	• All functions are composed of either AND'ed or OR'ed sub functions. The AND function is		
	composed of NMOS transistors in series. The OR function is composed of NMOS transistors		
11	in parallel.		
11.	 Contains a pull-up network (PUP) and pull down network (PDN). 		
	 PUP networks consist of PMOS transistors 		
	 PDN networks consist of NMOS transistors 		
	 Fach network is the dual of the other network 		
	 The output of the complementary gate is inverted. 		
	What is Elmore delay model? (April / May 2017) BTL 2		
	This is an approximate method to find the delay of net or interconnects in terms of resistance and		
	capacitance		
12.	General property of Elmore delay model network has		
	Single input node		
	• All the capacitors are between a node and ground		
	 Network does not contain any resistive loops 		
	What are the basic methods to implement inverter in PTL? BTL1		
13	NMOS using load resistance in parallel		
15.	NMOS depletion mode transistor where the gate is connected to the source so it is always on		
	NMOS enhancement mode transistor where the gate terminal is always connected to VDD.		
	What are the short falls of pass transistor logic? BTL4		
	The short fall associated with PTL is threshold variation (or) threshold dron An NMOS device is		
14.	affective at passing a 0, but it is poor at pulling a node to VDD. When the pass, transister pulls a		
	effective at passing a 0, but it is pool at pulling a node to VDD. When the pass- transistor pulls a		
	node nigh, the output only charges to vDD-vth. The output voltage will also gets affected when the		
	source to body voltage 1s present (body effect).		
	What are the methods to reduce threshold drop problems in PTL? BTL3		
15.	Incorresponding level restoration circuit		
	Multiple – threshold transistors		
	Transmission gate		
	What is complementary pass transistor logic? B1L2		
16.	CPL is an alternative structure to eliminate threshold variation. The main concept behind CPL is the		
	use of only an nivios network for the implementation of logic functions. This results in low input		
	capacitatice and high speed operation. It consists of high pass transistor logic network driven by		
	two sets of complementary inputs and CMOS inverter used as buffers.		
17.	The first method consists of single pMOS transistor connected in foodback noth (i.e.) cross counled		
	feedback		

REGULATION: 2017 ACADEMIC YEAR : 2020-2021 The second restoration method utilizes pMOS gate connected to the output of inverter. What is swing-restored pass transistor logic? BTL2 Swing restored pass transistor is an alternate configuration for PTL to eliminate threshold drop. In 18. SRPTL the output inverters are cross coupled like a latch structure, which performs both swing restoration and output buffering. What are the advantages of multiple threshold transistors? BTL2 The threshold problem in pass transistors can be reduced using multiple threshold transistors. The 19. primary goal of multiple threshold voltage circuits is to selectively scale the threshold voltages together with the supply voltage in order to enhance speed without increasing the subthreshold leakage current. What are the limitations of multiple threshold transistors? BTL2 The primary disadvantage of using multiple threshold transistors, has impact on the power 20. consumption due to sub-threshold current flowing through the pass transistors, even if V_{gs} is below V_t , the sub-threshold leakage is not significant in the critical paths when the device is constantly switching but produces negative impact when the device is idle. What is pass transistor logic? BTL2 Pass transistor is a MOS transistor, in which gate is driven by a control signal, the source(out), the 21. drain of the transistor is called constant or variable voltage potential (in). When the control signal is high, input is passed to the output and when the control signal is low, the output is in high impedance. List the advantages of pass transistor logic. BTL2 PTL circuits are often superior to standard CMOS circuits in terms of layout density, circuit 22. delay and power consumption. They do not have a path to GND and do not dissipate standby power (state power dissipation) What is transmission gate? BTL2 The circuit constructed with the parallel connection of PMOS and NMOS with shorted drain and 23. source terminals. The gate terminal uses two select signals s and sbar, when s is high then the transmission gate passes the signal from input to output. When s is low the the circuit enters into high impedance state. List the application of transmission gate. BTL1 Multiplexing element or path selector circuit 24. A latch element • An analog switch Act as a voltage controlled resistor connecting the input and output. List the important properties of static CMOS design. BTL1 At any instant of time, the output of the gate is directly connected to VSS or VDD. • All functions are composed of either ANDed or ORed sub functions. The AND function is • composed of NMOS transistors in series. The OR function is composed of NMOS transistors in parallel. 25. Contains a pull-up network (PUP) and Pull down network (PDN) • PUP network consists of PMOs transistors • PDN network consists of NMOS transistors • Each network is the dual of the other network. • The output of the complementary gate is inverted. • What are the advantages of static CMOS design? BTL2 26. Robust in construction • • Good noise immunity

REC	GULATION: 2017 ACADEMIC YEAR: 2020-2021
	• Static logic has no minimum clock rate, the clock can be pause indefinitely
	• Low power consumption
	• For low operating frequencies, CMOS static logic is used to obtain a relatively small die size.
	List the limitations of static CMOS design. BTL1
	The main limitation of static circuits is slower speed as compared to dynamic circuits.
	The reasons are
27.	• Increased gate capacitance due to the presence of both PMOS and NMOS transistors
	• Output depends on the previous cycle inputs due to charges that may be present at internal
	inputs
	 Multiple switching of the output within a cycle depending on the input switching pattern
	What are the classifications of CMOS circuit families? BTL 1
	Static CMOS circuits
28.	Dynamic CMOS circuits
	Pational circuits
	Ratioed clicuits
	What are the characteristics of static CMOS design? BTI 2
20	A static CMOS circuit is a combination of two networks, the null up network (DIN) and the null
29.	down network (PDN) in which at every point in time, each gate output is connected to either VDD or
	Use via a low resistance path
	What is hubble pushing? PTL 2
	Rubble pushing is a principle which is applied for static CMOS structure that is dual in pature that
30.	can be obtained using the duality principle of Demorgan's theorem. For example an OR gate is
	can be obtained using the duality principle of Demorgan's theorem. For example an OK gate is acuivalant to a NOP gate
	with bubbles at its inputs
	What is AOI and OAI logic? BTL 2
	AND-OR-INVERT (AOI) logic are two level compound (or complex) logic functions constructed
21	from the combination of one or more AND gates followed by a NOR gate Construction of AOI cells
51.	is particularly efficient using CMOS technology where the total number of transistor gates can be
	reduced compared to the same construction using NAND logic. In OR-AND-INVERT (OAI) logic
	where the OR gates precede an AND gate
	Define critical naths BTL?
32.	Critical path is the longest path in the circuit which decides the most critical function and requires the
	attention to timing details
	What are the main levels that critical paths affect a system? BTL1
	• The architectural/micro-architectural level
33.	• The logic level
	• The logic level
	• The circuit level
	The layout level Define DC delay model. DTL 2
34.	Define KC delay model is an analytical method used to actimate the delay of logic setes. The BC delay
	redel treats transistors switches in series with resistors. Once the delay in the sirewit is estimated the
	circuit can be modified to operate faster
25	What is intrinsic delay? BTL 2
55.	The RC product of an MOS transistor is called intrinsic delay denoted as τ
	Define Elmore delay model BTL 2
36.	Elmore delay model is an analytical method used to estimate the PC delay in a network Elmore
	delay model estimates the delay of a DC ledder of the sum ever each node in the ledder of the
	ucial model estimates the ucial of a NC lature as the sum over each mode in the latter of the

	resistance Rn-1 between that node and a supply multiplied by the capacitor on the nodes.
	What are the general properties of Elmore delay model? BTL2
07	General property of Elmore delay model network has
37.	• Single input node
	• All the capacitors are between a node and ground
	Network does not contain any resistive loop
20	Define absolute delay. BTL2
58.	The absolute delay of a gate is the product of a unit-less delay of the gate (gate with as parasitics) and
	the delay unit that characterizes a given process.
39.	Define linear delay. BTL2
	Linear delay is the sum of effort delay and parasitic delay.
40.	Define effort delay. B1L2
	The delay that depends on the load and on properties of the logic gate driving the load. It is related in
	two terms: the logic effort of the logic gate and the electrical effort h characteristics the load.
4.1	Define electrical effort, B1L2
41.	effort describes how the electrical environment of the logic gate effects the performance and how the
	size of the transistors in the gate determines its load-driving canability
	Define logical effort. BTL 2
42.	Logical effort of a gate is defined as the ratio of the input capacitance of the gate to the input
	capacitance of an inverter that can deliver the same output current.
12	Define parasitic delay. BTL2
43.	The parasitic delay is the ratio of the parasitic capacitance to the input capacitance of the inverter,
	which is just P _{inv.}
11	Define path logical effort. BTL2
	The logical effort along a path compounds by multiplying the logical efforts of all the logic gates
	along the path.
45.	Define path electrical effort. B1L2 The electrical effort along a noth through a network is simply the rotic of the conscitute or with loads
	The electrical effort along a path through a network is simply the ratio of the capacitance with loads the last logic gate in the path to the input capacitance of the first gate in the path.
	Define branching effort BTL2
46.	When fan out occurs within a logic network some of the variable drive current is directed along the
	path.
47.	Define path effort. BTL2
	The path effort is the product of the stage efforts to the electrical effort of each stage.
40	Define path delay. BTL2
48.	The path delay is the sum of the delays of each of the stage of logic in the path. It can also be written
	as the sum of the path effort delay and path parasitic delay.
	What are the ways to minimize delay in a chain of inverter? BTL4
49.	• Minimize the delay between input and output.
	• Increase the size of successive inverter.
	• Use minimum number of stages.
	Minimize gate delay.
	What are the sources of power dissipation? (April/May 2015)BTL2
50.	• Static power dissipation (due to leakage current when the circuit is idle)
	• Dynamic power dissipation (when the circuit is switching) and
	• Short-circuit power dissipation during switching of transistors.

REG	GULATION: 2017 ACADEMIC YEAR: 2020-2021
	What is static power dissipation? BTL2
	Power dissipation due to leakage current when the circuit is idle is called the static power dissipation.
= 1	Static power due to
51.	• Sub-threshold conduction through OFF transistors.
	• Tunneling current through gate oxide.
	• Leakage through reverse biased diodes.
	Contention current in ratioed circuits.
50	What is Dynamic power dissipation? BTL2
52.	Power dissipation due to circuit switching to charge and discharge the output load capacitance at a
	particular node at operating frequency is called dynamic power dissipation.
52	Define activity factor. BTL2
55.	The node transition activity factor, is a statistical parameter and is data rate dependent and defines the
	probability of the gate's output to make logic transition during one clock cycle.
54	What is short circuit power dissipation? BTL2
54.	During switching, both nMOS and pMOS transistors will conduct simultaneously and provide a
	direct path between VDD and the ground rail resulting in short circuit power dissipation.
	What are the methods to reduce dynamic power dissipation? (Nov/Dec 2013)BTL4
55	 Reducing the product of capacitance and its switching frequency.
55.	• Eliminate logic switching that is not necessary for computation.
	Reduce activity factor.
	Reduce supply voltage.
	What are the methods to reduce static power dissipation?(Nov/Dec 2013) BTL4
	• By selecting multi threshold voltages on critical paths with low Vt transistors while leakage
	on other paths with high Vt transistors.
56.	• By using two operating modes, active and standby for each function blocks.
	• By adjusting the body bias that is adjusting fbb(forward body bias)in active mode to increase
	performance and RBB(reverse body bias) in standby mode to reduce leakage.
	• By using sleep transistor to isolate the supply from block to achieve significance leakage
	power savings.
57.	What is SFPL? BTL2
0,11	Source Follower Pull up logic is a variation on Pseudo nMOS whereby the load device is an N pull-
	down transistor and N source follower pull ups are used on the inputs.
	What is CVSL: B1L2 Canada Voltage guitch logic belongs to class of differential logic types. The network consists of a
58.	dual n block instead of a dual n block and a pair of cross coupled nMOS transistors computes the
	logic function and its complement CVSL can be roughly as fast as dynamic logic it dissipates
	almost as little static power as static CMOS and is relatively robust against large structure
	What are the characteristics of CVSL? BTL3
59.	• CVSL is a differential type of logic circuit whereby both true and complement inputs are
	required.
	 N pull down trees are the dual of each other.
	• P pull up devices are cross coupled to latch output.
	 Both true and complement outputs are obtained.
	What is dynamic CMOS logic? BTL2
60	• Dynamic circuits rely on the temporary storage of signal values on the capacitance of high
	impedance nodes.
	• Requires only N+2 transistors.
L	· · · · · · · · · · · · · · · · · · ·

	• Takes a sequence of precharge and conditional evaluation phases to realize logic functions.
	What are the properties of Dynamic Logic? BTL4
	• Logic function is implemented by the pull down network only.
61.	• Full swing outputs(V _{OL} =GND and V _{OH} =VDD)
	• Non-ratioed
	• Faster switching speeds
	• Needs a precharge clock
62	What is ratioed circuits? BTL2
02.	Ratioed logic is an attempt to reduce the number of transistors required to implement a given logic
	function, often at the cost of reduced robustness and extra power dissipation.
63.	What is pseudo-nMOS circuits? BTL2
	Circuit implemented with nMOS having grounded pMOS gate is called pseudo-nMOS circuits.
	What are the advantages of pseudo-nMOS circuits? B1L4
64.	• Reduce number of transistors (N+1, versus 2N for CMOS)
0	• The normal high output voltage (V_{OH}) for this gate is VDD since the pull-down stack are
	turned off when the output is pulled high.
	• Pseudo-nMOS gates offer improve speed factor.
65.	what are the disadvantages of pseudo-niviOS circuits? B1L2
	Reduced holse margin
	• Static power dissipation
66.	The input to the payt store is charged up through the pMOS transistor when the clock is low, this
	The input to the next stage is charged up through the pivos transistor when the clock is low, this phase of the clock is known as the precharge phase
	What is Evaluation phase? BTL?
67	When the clock is high however, the pMOS is cutoff and the bottom nMOS is turned ON, thereby
07.	disconnecting the output node from VDD and providing a possible pull-down path to ground through
	the bottom nMOS transistor. This part of the clock cycle is known as the evaluation phase.
	What is footed and unfooted dynamic circuits? BTL2
60	• In unfooted dynamic circuits uses one pMOS through which a clk is connected which give
68.	rise to contention problem when both pMOS and nMOS ON precharge phase.
	• In footed dynamic circuits uses a single pMOS precharge transistor and one nMOS evaluation
	transistors to avoid contention problem.
	What are the disadvantages of dynamic CMOS logic? BTL2
69.	• A fundamental difficulty with dynamic circuits is a loss of noise immunity and a serious
	timing restriction on the inputs of the gate.
	Violate monotonicity during evaluation phase.
70.	What is CMOS domino logic? BTL2
	A static CMOS inverter placed between dynamic gates which eliminate the monotonicity problem in
	dynamic circuits are called UMOS domino logic.
71.	what are the properties of domino logic? B1L2
	• Only non-inverting logic can be implemented.
	 very high speed having tp_{HL}=0 Eliminates the monotonicity problem
	Emminates the monotonicity problem. What is dual rail domina logia? BTL 2
72.	Circuit is said to be dual-rail domino if each logical variable is represented by two wires, one that
	goes high if the signal is false, with this encoding an input variable going true can cause an output

REGULATION: 2017

	variable to go true or false.
	What are glitches? BTL2
73.	A node exhibiting multiple transitions in a single clock cycle before settling to the correct logic level
	is called glitches or dynamic hazards. The occurrence of glitching in a circuit is mainly due to
	mismatch in the path lengths in the network.
	What are the non-ideal effects dynamic logic? BTL2
	Although a dynamic logic circuit has less propagation delay than its static counterpart, there are
74	integrity means how well a signal can transfer from one place to enother along a signal path, which
/4.	may be a long chain, a wire, or both. There are many factors that can affect the signal integrity. These
	include leakage current, charge injection, clock (capacitive) feedthrough, backgate coupling, charge
	loss effect, charge-sharing effect, and power supply noise. These effects are often named as non ideal
	effects of dynamic logic.
	What is charge sharing? BTL2
	Charge sharing is a serious problem in dynamic logic, which occurs when two or more capacitors at
75.	different potentials are tied together. A node of a network must never be driven simultaneously by
	signals of opposite polarity, as this can leave the node in an erroneous or undefined state. One must
	beware of sneak paths which allow charge to leak. Charge sharing can occur when dynamic gates
	drive pass transistors.
	The common approaches to reduce the charge sharing effect are as follows
76.	• Increasing the capacitance of the critical node
	 Using the charge keeper
	 Precharging the internal nodes
	Define Transistor Sizing problem. (May/ June 2014) BTL2
77.	Transistor sizing, an important problem in designing high performance circuits, has traditionally been
	formally defined as Minimize Area or Power, Subject to Delay.
	Why is the transmission of logic 1 degraded as it passes through a nMOS pass
	transistor.(Nov/Dec 2016) BTL4
78.	When $S = 1$ (Vdd), and Vin = 1 the pass transistor begins to conduct and charges the CL towards
	Vdd. Initially Vin is at a higher potential than Vout, the current flows through the device. As voltage
	of the load approaches $\sqrt{dd} - \sqrt{dl}$, the final device begins to turn - off. will is the final distribution of logic 1 is degraded
70	List the various nower losses in CMOS circuits? (May/June 2013) BTL1
17.	Static power loss. Dynamic power loss
	What is a pass transistor? What are its advantages? (Nov 2013) BTL2
	Pass transistor is similar to a buffer. Advantages of pass transistor are
80.	• Occupies less space, because any logical operation can be realized with lesser number of
	MOS transistors
	 MOS transistors No direct path between VDD and Gnd. So, amount of power dissipation is lesser understand
	 MOS transistors No direct path between VDD and Gnd. So, amount of power dissipation is lesser understand by condition.

REG	GULATION : 2017 ACADEMIC YEAR : 2020-2021	
	Explain the resistive and capacitive delay estimation of CMOS inverter circuit. ((13M)
	(May/June2013) BTL4	
2	Answer: Page 2.62-2.66- Dr.R.Uma	
۷.	RC Delay Models-ON Resistance	(3M)
	Calculation of fall Delay	(4M)
	Calculation of Rise Delay	(4M)
	Propagation Delay	(2M)
	Find the rising and falling propagation delays of an AND- OR- INVERT gate using the E	lmore
	delay model. (13M) (Nov/Dec 2013) BTL5	
	Answer: Page 2.72-2.74- Dr.R.Uma	
2	Elmore Delay model Network- Single input node- All the capacitors are between a nod	e and
5.	ground- Network does not contain any resistive loops	(4M)
	Calculation of Rise Time	(3M)
	Calculation of Fall Time	(3M)
	Propagation Delay	(3M)
	Design NAND gate using pseudo –nMOS Logic. (13M) (Nov/Dec 2013) BTL6	
	Answer: Page 2.107-2.111- Dr.R.Uma	
4.	Static CMOS gates- slower- input must drive both nMOS and pMOS transistors	(2M)
	Ratioed Inverter Transfer Function	(3M)
	NAND gate using Pseudo nMOS logic- Grounded PUN-PDN as static CMOS	(5M)
	Diagram	(3M)
	Explain the domino and dual rail domino logic families with neat diagrams. (13M) (No)v/Dec
	2012) BTL2	
5.	Answer: Page 2.125-2.127- Dr.R.Uma	
	CMOS Domino Logic- Dynamic CMOS logic configuration- drawback- Monotonicity Problem	n(5M)
	Properties of Domino Logic - Only non-inverting logic- Very high speed- Disadvantages	(3M)
	Dual Rail Domino Logic- Diagram- AND/NAND structure- XOR/XNOR structure	(5M)
	What is transmission gate? Explain the use of transmission gate.(13M). (April / May	2017)
-	B1L2	
6	Answer: Page 2.39-2.46- Dr.K.Uma	
	Application of Transmission Cate. Dath Selector Implementation of D Latch using Transm	(ONI)
	Application of Transmission Gate- Faul Selector-implementation of D-Latch using Transmi	(7M)
	PART * C	(/101)
	Implement the following function using CMOS	
	f(A,B,C) = A'BC + AB'C + ABC' (8M)	
	y= (A+B)(C+D) (7M) (Nov/Dec 2013,2019) BTL6	
	Answer: Page 2.57-2.62- Dr.R.Uma	
	1) The PUN will consist of multiple inputs, therefore requires a circuit with multiple H	PMOS
1	transistors.	(2M)
	2) The PDN will consist of multiple inputs, therefore requires a circuit with multiple N	JMOS
	transistors.	(2M)
	PDN Design Synthesis	(4M)
	If the PDN is conducting, then the output will be low- Boolean expression for the complem	nented
	output Y.	
	In turn, the PDN can only be conducting if one or more of the NMOS devices are conducting	ig and

REC	EGULATION : 2017	ACADEMIC YEAR : 2020-2021
	NMOS devices will be conducting (i.e.,triode mode) when the	e inputs are high
	PUN Design Synthesis	(4M)
	If the PUN is conducting, then the output will be high-Bool	ean expression for the un-complemented
	output Y.	
	In turn, the PUN can only be conducting if one or more of the	e PMOS devices are conducting and
	PMOS devices will be conducting (i.e., triode mode) when the	e inputs are low
	Diagram	(3M)
	(i) Draw the static CMOS logic circuit for the following ex-	pression
	(a) $Y = (A.B.C.D)$ (b) $Y = (D(A+BC))$	
	(ii) Discuss in detail about the characteristics of transmis	sion gate.(15M) (May/June 2016.2018)
	BTL6	
	Answer: Page 2.57-2.62- Dr.R.Uma	
	1)The PUN will consist of multiple inputs therefore re	courses a circuit with multiple PMOS
	transistors	(2M)
	2)The PDN will consist of multiple inputs therefore re	quires a circuit with multiple NMOS
	transistors	(2M)
	PDN Design Synthesis	(2M)
2	1 If the PDN is conducting then the output will be low. Thu	s we must find a Boolean expression for
	the complemented output V	s, we must find a boolean expression for
	In turn, the DDN can only be conducting if one or more of	the NMOS devices are conducting and
	NMOS devices will be conducting (i.e. triode mode) when the	a inputs are high
	DUN Design Synthesis	e inputs are ingli
	1 If the DUN is conducting then the output will be high. T	(SIM)
	1.11 the PON is conducting, then the output will be high. 1.	lus, we must find a boolean expression
	Ior the un-complemented output Y.	DMOC designs and heating and
	In turn, the PUN can only be conducting if one or more of the	e PMOS devices are conducting and
	PMOS devices will be conducting (i.e., triode mode) when the	e inputs are low (1)()
	Diagram	
	Characteristics of Transmission Gate	(4M)
	Write short notes on 1) Ratioed circuits 11) Dynamic CMO	S circuits. (15M) (Nov/Dec 2016,2019)
	BIL2 Answer Base 2 107 2 124 Dr D Line	
3	Answer: Page 2.10/-2.124- Dr.K.Uma Defined Circuita, Decude a MOS circuita, Defind Investor to	nation function. Logical offert of Davide
	Ratioed Circuits- Pseudo invios circuits- Ratied inverter tra-	inster function- Logical effort of Pseudo
	nivios gales-Advantages of Psudo nivios gales- Disadva	L) Characteristics (2M)
	Follower Pull up Logic-Cascade Voltage Switch Logic (UVS	L)- Characteristics (8M)
	Dynamic CNIOS Logic- Properties of Dynamic Logic-Appr	cations of Dynamic Logic (7M)
	(1) Design D-flip-flop using transmission gate.	
	(ii) Implement a 2- bit non-inverting dynamic shift region (Norman 2012) DTL	ster using pass transistor logic.(15M)
	(NOV/Dec 2013) B1L0	
	Answer: Page 2.39-2.48- Dr.R.Uma	
4.	Fransmission Gate- Basic Structure-DC Characteristics of T	ransmission Gate (4M)
	Application of Transmission Gate- Path Selector-Implem	entation of D-Latch using Transmission
		(3M)
	D-Flip flop Diagram	(3M)
	2 bit shift register using pass transistor logic Diagram	(3M)

UNIT III – SEQUENTIAL LOGIC CIRCUITS

Static latches and Registers, Dynamic latches and Registers, Pulse Registers, Sense Amplifier Based Register, Pipelining, Schmitt Trigger, Monostable Sequential Circuits, Astable Sequential Circuits. Timing Issues : Timing Classification Of Digital System, Synchronous Design.

PART * A

Q.No.	Questions
	Define combinational and gequential circuit (New Dec 2010) DTL 2
1.	A combinational circuit consists of logic gates whose outputs at any time are determined from the present combination of inputs. On the other hand a sequential circuit in which the output depends on previous as well as current inputs. They can be used to keep a record of what value a variable (input, output or intermediate) had in the past as well as store the current value of a variable for later use.
2.	What is sequencing element? (Nov/Dec 2019) BTL2 Sequential circuits are designed with flip flops or latches, which are sometimes called memory elements that hold data called tokens. They can be used to keep record of what value (previous token) a variable had in the past as well as store the current (current token) value of a variable. They are used to 'sequence' data, i.e. make a large amount of data appear in a pre-determined bit by bit sequence, they are called as sequencing elements.
	What is sequencing overload? (April/May 2019) BTL2
3.	Sequencing elements delay tokens that arrive too early, preventing them from catching up with the previous tokens. Unfortunately, they inevitably add some delay to tokens that are already critical, decreasing the performance of the system. This extra delay is called sequencing overload.
	Define static and dynamic sequencing element. (April/May 2019) BTL2
4.	Sequencing element can be static or dynamic. A sequencing element with static storage employs some sort of feedback to retain its output value indefinitely. A sequencing element with dynamic storage generally maintains its value as charge on a capacitor that will leak away if not refreshed for a long period of time.
	Define metastability. (Nov/Dec 2018) BTL2
5.	Flip flop is a device that is susceptible to metastability. It has two well defined stable states, traditionally designated 0 and 1, but under certain conditions it can hover between them for longer than a clock cycle. This condition is known as metastability. Such a metastable "state" is considered a failure mode of the logic design and timing constraints. The most common cause of metastability is violating the flip-flop's setup and hold times. During the time from the setup to the hold time, the input of the flip-flop should remain in a stable logic state; a change in the input in that time will have a probability of setting the flip-flop to a metastable state.
	Define metastable condition. (Nov/Dec 2018) BTL2
6.	In reality, when a flip flop samples as input that is changing during its aperture, the output Q may momentarily take on a voltage between 0 and VDD that is in the forbidden zone. This is called a metastable state. Eventually, the flip flop will resolve the output to a stable state of either 0 or 1.
	Define resolution time. (April/May 2018) BTL2
7.	If the input to a bistable device such as a flip flop changes during the aperture time, the output may take on a metastable value for some time before resolving to a stable 0 or 1. The amount of time required to resolve is unbounded, because for any finite time, t the probability that the flip flop is still metastable is nonzero. However, this probability drops off exponentially as t increases. Therefore, if we wait long enough, much longer than t_{pcq} , we can expect with exceedingly high probability that the
	tlip-tlop will reach a valid logic level.

REG	GULATION : 2017 ACADEMIC YEAR : 2020-2021	
8.	Define logic propagation delay (t_{pd}). BTL2	
	Upper bound on interval between valid inputs and valid outputs.	
9.	Define logic contamination delay (t_{cd}). BTL2	
	Lower bound on interval between invalid inputs and invalid outputs.	
10	Define Latch/flip flop clock to Q propagation delay (t _{pcq}). (April/May 2018) BTL2	
10.	t _{PLH} : 50% triggering edge point of the clock pulse to 50% transition of the output from low to high.	
	t _{PHL} : 50% triggering edge point of the clock pulse to the high to low transition of the output.	
11.	Define Latch/flip flop clock to Q contamination delay (t_{ccq}). B1L2	
	Output signal start to change after its input change and settles to the final value within a propagation	
	Define Latch D to O propagation delay (t) PTL 2	
12.	Assuming that the setup and hold times are met, the data at the D input is conied to the O output after $\Delta = 0$	
	a worse case propagation delay	
	Define Latch D to O contamination delay (t,) BTL 2	
13.	This delay ensures that the D input of the sequential elements is held enough after the clock edge and	
	is not modified too soon by the new value of date coming in	
	Is not modified too soon by the new value of data confing III.	
14.	Define Latch/flip flop setup time (t _{setup}). B1L2	
15	Define L steh/flip flop hold time (t) PTL2	
15.	Define Laten/inp flop four time (t_{hold}) . DIL2 The time after the clock edge that the D input has remained stable is called hold time	
	List the methods of sequencing static circuits BTI 1	
	The three most widely used methods of sequencing static circuits	
16.	Flin flons	
	• 2-Phase transparent latches	
	 Pulsed latches 	
	Define setup time failure or max-delay failure. BTL2	
17.	If the combinational logic delay is too long, the receiving element will miss its setup time and sample	
	the wrong value. This is called a setup time failure or max-delay failure.	
10	What is called pulsed latch? BTL2	
18.	The latch that has short clock to Q delay and a long hold time is called pulsed latch or single phase	
	level triggered latch.	
	Define min-delay failure. BTL2	
19.	In a sequential circuit if the hold time is large and the contamination delay is small, data can	
	incorrectly propagate through two successive elements on one clock edge, corrupting the state of the	
	system. This is called a race condition, hold time failure or min-delay failure.	
	Define time borrowing. B1L2	
	The principle advantage of transparent latches over flip flops is the softer edges that allow data to	
20	propagate through the latch as soon as it arrives instead of waiting for a clock edge. Therefore, logic	
20.	does not have to be divided exactly into half cycles. Some logic blocks can be longer while others are	
	shorter, and the latch based system will tend to operate the average of the delays; a flip flop based	
	system would operate at the longest delay. This ability of slow logic in one half-cycle to use time	
	normally allocated to faster logic in another half-cycle is called time borrowing or cycle stealing.	
	What is clock skew? BTL2	
21.	In reality clocks have some uncertainty in their arrival times that can cut into the time available for	
	useful computation is called clock skew.	

	What are the different types of pipelines? BTL2
	Depending on the data forwarded fashion namely, when applied to new data, pipelining techniques can be classified into synchronous pipelining, asynchronous pipelining and wave pipelining. In the synchronous pipelining, new data are applied to a computational circuit in intervals determined by
22.	the maximum propagation delay of the computational circuit. In the asynchronous pipelining, new
	data are applied to a computational circuit in intervals determined by the average propagation delay
	of the computational circuit. In the wave pipelining, new data can be applied to a computational
	circuit in intervals determined by the difference between maximum and minimum propagation delays
	of the computational circuit.
	What are the approaches used in the design of asynchronous pipeline systems? BTL2
23	An asynchronous design is based on the concept of modular functional blocks intercommunicating
25.	using some communication protocols. The general approaches of asynchronous pipeline systems are
	one way control and two way control. The one way control is also called a strobe control and the two
	way control scheme is generally referred to as a handshaking control.
	What are the important constraints for any synchronous or asynchronous pipeline systems to
	work properly? BTL3
	Regardless of which scheme is used and whether the underlying system is synchronous or
	asynchronous, any sequential logic must satisfy two constraints in order to work property. These include physical timing constraint and event logical order. Physical timing constraint guarantees that
24	each function unit and memory element has enough time to complete the specific operations. For
24.	example in order to guarantee that the output data from a memory element is valid the physical
	timing constraints, such as setup time and hold time of latches or flip flops, must always be satisfied.
	Event logical order means that events in the system must occur in the logical order set by the
	designer. In a synchronous system, this is commonly achieved by using a clock to provide a time
	base for determining what and when to happen. In an asynchronous system, some other schemes,
	such as handshaking signals or protocols are deployed.
25	What is resettable latch? BTL2
23.	Resettable latches and flip-flops employs a control input called reset signal to enter a known initial
	state on startup.
26	What are the two types of reset? BTL1
26.	In supervision reset are (1) Synchronous (1) Asynchronous control inputs and clock signal
	In synchronous reset, the output is independent of the synchronous input and the clock input
	What is klass semi-dynamic flip-flop? BTL 2
27	Klass semi-dynamic flip-flop is a single output positive edge-triggered flip flop. It is domino-style
27.	front end allows for efficient embedded combinational logic and reduces the load on the data
	network.
	What is differential flip-flop? BTL2
28.	Differential flip-flops accept true and complementary inputs and produce true and complementary
	outputs. This can be built from a clocked sense amplifier so they can rapidly respond to small
	differential input voltages.
	What is TSPC? BTL2
29.	The True Single Phase Clock latch is constructed by merging CMOS Domino and CMOS NORA
	logic. Conventional latches require both true and complementary clock signals. Normally the
	complementary signals are generated with an inverter in the latch cell.
30	What is regenerative circuit? BTL2
50.	The fundamental elements used in clock generation are called regenerative circuits which can be
	catalogued as astable and monostable. The astable circuit act as oscillators and can be used in on-chip

	clock generation. The monostable circuit act as one-shot circuit and can be used in pulse generation.
	Another important regenerative circuit is the Schmitt trigger having the property of showing
	hysteresis in its dc characteristics.
	What are the important properties of Schmitt trigger circuit? BTL3
	A Schmitt trigger circuit has two important properties:
31.	• It responds to a slowly changing input waveform with a fast transition time at the output.
	• Its switching threshold is variable and depends upon the direction of the transition (low to
	high or high to low). The main advantage of this property is the Schmitt trigger is turn a noisy
	or slowly varying input signal into a clean digital output signal.
	Define monostable circuit. BTL2
	A monostable circuit is a circuit that generates a pulse of predetermined width every time the
22	quiescent circuit is triggered by a pulse or transition event. It is called monostable because it has only
52.	one stable state. A trigger event, which is either a signal transition or a pulse, causes the circuit to go
	temporarily into another quasi-stable state. This means that it eventually returns to its original state
	after a time period determined by the circuit parameters. This circuit, also called a one shot, is useful
	in generating pulses of a known length.
	Define astable circuit. BTL2
33	An astable circuit has no stable states. The output oscillates back and forth between two quasi-stable
55.	states, with a period determined by the circuit topology and parameters. One of the main applications
	of oscillators is the on-chip generation of clock signals. The ring oscillator is a simple example of an
	astable circuit.
	How memory classified based on the type of data access? BTL4
	The semiconductor memory can be classified in terms of the type of data access and the capability of
	information retention. According to the type of data access, semiconductor memory can be
34.	subdivided into serial access, content addressable, and random access. The data in serial-access
	memory can only be accessed in a predetermined order and mainly contains shift registers and
	ducues. Content addressable memory (CAM) is a device capable of parallel search; namely, it behaves likes a lockup table in which all antries can be searched in parallel. Bandom access memory
	(\mathbf{PAM}) is a memory device where any word can be accessed at random at any time. The random
	(KAM) is a memory device where any word can be accessed at random at any time. The random access memory can be further categorized into read/write memory and read-only memory
	How memory classified based on the canability of information retention? BTL 4
	According to the capability of information retention, semiconductor memory may also be cast into
35	volatile and non-volatile memories. The volatile memory such as static RAM and dynamic RAM
55.	will lose its information once the power supply is interrupted while the non-volatile memory, such as
	the ROM family, ferroelectric RAM (FRAM) and magneto resistance RAM (MRAM), still retain
	their information even when the power supply is removed.
	What is serial access memory? BTL2
26	Serial access memory mainly contains shift registers and queues. The former can be further
36.	subdivided into serial in parallel out and parallel in serial in, while the later contains first in first out
	and first in last out. A FIFO is generally called a queue or a buffer and a FILO is referred to as a
	stack.
	What is RAM? BTL2
	Random Access memory (RAM) is a memory device in which any word can be accessed at random
37.	in a constant time. The random access memory can be classified into read/write memory and read
	only memory. Read/write memory can be further subdivided into two types: static RAMs (SRAMs)
	and Dynamic RAMs(DRAMs). SRAM is mainly used as the main memory for those computer
	systems needing a small memory capacity, and as the cache memory for large computer systems,
	such as desktop computers and servers. DRAM is used as the main memory for those computer

REGULATION: 2017

	systems requiring a large memory capacity.
•	What is SRAM? BTL2
38.	The SRAM cell consists of a bi stable device accompanied with two access transistors and thus stores
	its information in a form of circuit state.
	What is DRAM? BTL2
•	The DRAM cell comprises an access transistor and a capacitor, and retains information in the form of
39.	charge. Due to the leakage current of the access transistor, the capacitor in a DRAM cell is gradually
	losing its charge and eventually its information. To remedy this, a DRAM cell must be read and
	rewritten periodically, even when the cell is not accessed. This process is known as refresh.
	What is CAM? BTL2
	Content Addressable memory (CAM) is a device with the capability of parallel search; namely, it
10	behaves like a lookup table in which all entries can be searched in parallel. A CAM cell is
40.	fundamentally a SRAM cell to store information with the addition of some extra circuits to facilitate
	the operation of parallel interrogation and indicate the result. CAM proceeds the reverse operation of
	SRAM; namely, it receives as an input data and output a matched address when the data matches one
	in the CAM.
	What is sequential search in CAM? BTL2
	One approach is to search the table in a way such that the keyboard is compared against tags in the
41.	table one by one. Such an approach is called a sequential search and is the usual way performed in
	most computer systems using a software algorithm as the unsorted data are stored in the table. Of
	course, this sequential search can also be realized with a RAM and a finite machine without the use
	of a more powerful microprocessor.
	What is parallel search in CAM? BTL2
	The other approach is to compare the keyword with all tags in the table at the same time. This results
	in a concept and technique known as a parallel search. To facilitate such a capability, a special
42.	hardware is needed. The table is composed of two parts: a tag part and a data item part. Both parts
	are a kind of memory array. However, the tag part needs the capability of a parallel search whereas
	motohas the harvord A memory array conchies of a neurolisi scareb is referred to as a content
	addressable memory (CAM). It is also called associative memory because the data associated with a
	tag is referenced whenever the stored tag matches the interrogating keyword
	What is synchronizers? (May/June 2014 May/June 2013)BTL?
43	A synchronizer is a circuit that accepts an input that can change at arbitrary times and produces an
15.	output aligned to the synchronizer's clock. Because the input can change during the synchronizer's
	aperture, the synchronizer has a non zero probability of producing a metastable output.
	What is arbiter? BTL2
44.	An arbiter is a circuit designed to determine which of several signals arrive first. Arbiters are used in
	asynchronous circuits to order computational activities for shared resources to prevent concurrent
	incorrect operations.
15	What is Arbitration? BTL2
43.	A closely related problem for synchronization is arbitration. Arbitration is necessary when two or
	more modules would like exclusive access to a shared resource.
16	What is synchronous interconnect? BTL2
ro.	A synchronous signal is one that has the exactly same frequency as a local clock, and maintains fixed
	phase offset to that clock.
47.	What is mesochronous interconnect? BTL2
	A mesochronous signal is one that has the exactly same frequency as a local clock, and maintains
	unknown phase offset to that clock.

REC	GULATION : 2017 ACADEMIC YEAR : 2020-2021
10	What is plesiochronous interconnect? BTL2
48.	A plesiochronous signal is one that has almost the same frequency as a local clock, resulting in
	slowly drifting phase offset to that clock.
	What is asynchronous interconnect? BTI 2
49.	An asynchronous interconnect is one that can have transition arbitrarily at any time and it is
	independent of local clock
	What is clock if ther? DTL 2
	what is clock jitter? BIL2
50.	Clock jitter refers to the temporal variation of the clock period at a given point- that is, the clock
	period can reduce or expand on a cycle-by-cycle basis. It is strictly a temporal uncertainity measure
	and is often specified at a given point on the chip.
	How is a latch different from a register? (Nov/Dec 2014) BTL4
51	A latch is level sensitive circuit that passes the D input to the Q output when the clock signal is high.
51.	Contrary to level sensitive latches, edge triggered registers only sample the input on a clock
	transition, that is $0 \rightarrow 1$ for a positive edge triggered register and $1 \rightarrow 0$ for a negative edge triggered
	register.
	Draw the switch level schematic of multiplexer based nMOS latch using nMOS only pass
	transistors for multiplexers. (May/June 2016) BTL3
	c_{LK}
52.	$p \rightarrow \rho \rightarrow \rho_{u}$
	$\frac{1}{CLK}$
	(a) Schematic diagram
	What is clocked CMOS Register? (May/June 2016) B1L2
	Clocked CMOS Register
53	
55.	
	Master Stage Starve Stage
	Figure shows an ingenious positive edge-triggered register, based on a master-slave concept
	insensitive to clock overlap. This circuit is called the C2MOS (Clocked CMOS) register.
	The overall circuit operates as a positive edge-triggered master-slave register very similar to the
	transmission gate based register. However, there is an important difference: A C2MOS register with
	CLKCLK' clocking is insensitive to overlap, as long as the rise and fall times of the clock edges are
	sufficiently small.
	What is meant by pipelining? (April / May 2017) BTL2
54.	Pipelining allows different functional units of a system to run concurrently. Pipelining cannot
	decrease the processing time required for a single task. The advantage of pipelining is that it
	increases the throughput of the system when processing a stream of tasks.
55.	Compare and contract gynchronous design and samphronous design (April / Mar 2017) DTI 4
	Compare and contrast synchronous design and asynchronous design. (April / May 2017) B1L4

	Asynchronous design	Synchronous Design				
	Clock pulse is given to first circuit and the	Simultaneous clock pulse is given to all				
	output of first circuit acts as a clock to the	the circuits.				
	next and so on.					
	Slow as compare to synchronous circuits	Fast as compare to asynchronous circuits.				
	Circuit is simple as compared to	Additional combinational circuit is				
	synchronous circuits	required for its designing This circuit				
	synemonous eneuris.	hecomes complex				
		becomes complex.				
	PAR	Г*В				
	Elaborate on the differences between latches	and registers with necessary timing diagrams.				
	(13M) (Nov/Dec2016) BTL4					
	Answer: Page 3.5-3.16 –Dr.R.Uma					
1	Sequencing Methods- Flip Flops-Transparent Late	ches- Pulsed Latches (3M)				
1.	Max Delay Constraints- Flip flop max delay co	onstraint- Two phase latch max delay constraint-				
	Pulsed latch max delay constraint	(4M)				
	Min Delay constraints- Flip flop latch min delay	constraint- Two phase latch min delay constraint-				
	Pulsed latch min delay constraint	(4M)				
	Diagram	(2M)				
	Explain the NORA-CMOS logic style for pipelin	ed structures. Is this topology race free? (13M)				
	(Nov/Dec 2016) BTL2					
2.	Answer: Page 3.31-3.34-Dr.R.Uma					
	U MOS based pipelined circuit is race free as long as all the logic function between the latches are					
	non-inverting. Each module consists of a block of and dynamic logic followed by a C^2MOS latch	(6M)				
	Operation modes for NORA logic modules	(OM) (7M)				
	Explain the methodology of sequential circuit d	esign of latches and flin-flons (13M) (May/June				
	2014) BTL2					
	Answer: Page 3.16-3.25-Dr.R.Uma					
	Conventional Latches and Flip flops	(2M)				
3.	Pulsed Latches	(2M)				
	Resettable Latches and Flip flops	(1M)				
	Enabled Latches and Flip flops	(2M)				
	Klass Semi-dynamic Flip flop	(2M)				
	Differential Flip flops	(2M)				
	True Single Phase Clock (TSPC) Latches and Flip	flops (2M)				
	Discuss the operation of a pipeline concepts use	d in sequential circuits. (13M) (May/June 2013)				
	(Apr/May 2016) (NOV/DEC 2017) BTL4					
	Answer: Page 3.25-3.34-Dr.R.Uma					
	Pipelining Concept	(2M)				
4.	I ypes of Pipelining	(1M) (2M)				
	Synchronous pipelining	(2M)				
	Asynchronous Pipelining Wave pipelining	(2M) (2M)				
	wave pipenning Latch versus Register based pipeline	(2M) (2M)				
	Latent versus register based pipeline NOR Δ_{c} CMOS Δ_{a} logic style for Pipelined Structu	(2N)				
	- rouge style for r perined structu	(21/1)				

<u>RE(</u>	GULATION : 2017 ACADEMIC YEAR : 2020-2021	1
	Explain the operation of master slave based edge triggered register. (13M) (May/Ju	$ne \ 2016)$
	BTL2	
5.	Answer: Page 3.17-3.18- Dr.R.Uma	
	Master Latch- First one followed by Slave Latch-Nine inverters- Four Transmission Gat	es-Master
	latch is Transparent	(7M)
	Slave Latch – Enabled – Update its state-negative edge triggered flip flop.	(6M)
	Explain the memory architecture. (13M) BTL2	
	Answer: Page 3.38-3.59-Dr.R.Uma	
	Memory- Memory Classification-Types of Data Access-Memory Organization-Memor	y Access
6	Timing	(3M)
0.	Static Random Access Memory- Basic RAM Cell Structures- Low Power SRAM Cells- Op	eration of
	SRAM- Dynamic Random Access Memory-Cell Structure- 3T RAM Cell-1T RAM Cell-	Structures
	of DRAM Memory Array	(6M)
	Read Only Memory- Active Programming ROM	(2M)
	Content Addressable Memory- Operation of CAM- CAM Organization-CAM Cells	(2M)
	Explain the memory control circuits. (13M) BTL2	
7	Answer: Page 3.44-3.59-Dr.R.Uma	
/.	Read Cycle Analysis- Write Cycle Analysis- Word Line RC Time Constant	(3+3)M
	Read Only Memory- Active Programming ROM	(4M)
	Content Addressable Memory- Operation of CAM- CAM Organization-CAM Cells	(3M)
	Explain synchronizers in detail. (13M) BTL2	
8.	Answer: Page 3.59-3.63-Dr.R.Uma	
	Synchronizer- A simple Synchronizer-Basic structure-Common synchronizer mistakes	(7M)
	Arbiter- Mutually Exclusive element- arbitration	(6M)
	PART * C	
	(Explain the timing basics and clock distribution techniques in synchronous design	in detail
	(15M) (Nov/Dec 2017.2019) BTI 4	m uttall.
1	Answer: Page 3.34-3.38-Dr.R.Uma	
1.	The Schmitt Circuit-Circuit- Timing diagram	(4M)
	CMOS implementation of Schmitt Trigger	(3M)
	Monostable Sequential circuits- Astable Circuits	(3+3M)
	(a)Explain the operation of true single phase clocked register	()
	(b)Draw and explain the operation of conventional. pulsed and resettable latche	es. (15M)
	(April/May 2017,2019)BTL2	· ()
2	Answer: Page 3.16-3.24- Dr.R.Uma	
	Conventional Latches and Flip flops- Pulsed Latches – Resettable Latches and Flip flop	(8M)
	True Single Phase Clocked Register- Non- overlapping Clocks- single external Clock	- Timing
	Diagram- TSPC Dynamic D flip flops	(7M)
	Explain the concept of timing issue and pipelining. (15M) (April/May 2017,2018)BTL4	. /
	Answer: Page 3.25-3.30-Dr.R.Uma	
2	Pipelining- Types of Pipelines-Synchronous Pipelining	(10M)
3	Asynchronous Pipelining-Source initiated transfer- Ready- Data valid- Data ac	ceptance-
	Acknowledge- Destination initiated Transfer- Request- Data Valid- Data Acceptance- Ack	nowledge
	(5M)	2
	Wave Pipelining	(5M)

UNIT IV – DESIGN OF ARITHMETIC BUILDING BLOCKS AND SUBSYSTEM

Arithmetic Building Blocks: Data Paths, Adders, Multipliers, Shifters, ALUs, power and speed tradeoffs, Case Study: Design as a tradeoff. Designing Memory and Array structures: Memory Architectures and Building Blocks, Memory Core, Memory Peripheral Circuitry.

	PART * A
Q.No.	Questions
1.	What is datapath? (Nov/Dec 2019) BTL2 A datapath is the data processing section of a processor. It consists of several multiple-bit data path elements or operators such as arithmetic units (adder, multiplier, shifter, comparator) or logical operators (AND, OR, NAND) arranged horizontally and connected with buses. Control signals connect to the datapath at the top and bottom.
2.	 What are the advantages of datapath operator? (Nov/Dec 2019) BTL2 The advantage of datapath operators are: To implement the logic function using n-identical circuits. Data may be arranged to flow in one direction, while any control signals are introduced in the orthogonal direction to the data flow.
3.	What is bit slice operation? (April/May 2019) BTL2 Bit slicing is a technique for constructing a particular word length of block from modules of smaller bit width. Each of these components processes one bit field or "slice" of an operand. The grouped processing components would then have the capability to process the chosen full word-length.
4.	 What are the advantages of full adder design using static CMOS? (April/May 2019) BTL2 The primary advantages of this static CMOS full adder are: It has full swing outputs that increase noise margin and reliability. It functions well at low power supply voltages because it does not have threshold loss problem. The adder can be manufactured by a basic conventional CMOS process with some mobility loss.
5.	 What are the disadvantages of full adder design using static CMOS? (Nov/Dec 2018) BTL2 The major shortfalls associated with the static CMOS full adder are: Large PMOS transistor in pull up network result in high input capacitances, which cause high delay and dynamic power. The critical path delay of SUM sub-circuit depends on the signal statistics of CARRY sub-block and inverter delay. Therefore the propagation delay is high in the static CMOS full adder realization. The intrinsic load capacitance of the CARRY signal is high which is contributed by the gates capacitances C1, C2, C3, C4, C5 and C6, diffusion capacitances in stage 1 and stage 2 and wiring capacitance. This adder realization consumes a large area and it could possible to fabricate in twin-tub CMOS process to avoid mobility degradation and latch up condition.
6.	Define Logical optimization. (Nov/Dec 2018) BTL2 Logical optimization can be achieved by transforming one logic circuit to another that is functionally equivalent. Logical optimization techniques use logical restricting rules to transform on network to

	another that I function	nally	equ	ivale	nt to	proc	luce effe	ctive power optimization for reduced supply
	voltages.							
	Draw the truth table of a binary full adder and write the expressions for sum and carry output.							
	(April/May 2018) BTL3							
	A B							
	C' Full							
	Cin → adder → Cout	A	В	C,	S	C.	Carry	
_	Sum	100				 	statics	
7.	oum	0	0	0	0	0	delete	
		0	1	-	-	0	derete	
		0	1	1	0	1	propagate	no. strange or pro-
		1	0	0	1	0	propagate	$S = A \oplus B \oplus C_i$
		1	0	1	0	1	propagate	$= A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C + ABC$
		1	1	0	0	1	generate	- ABCI+ABCI+ABCI+ABCI
		1	1	1	1	1	generate	$C_0 = AB + BC_i + AC_i$
	Write the expressions	s for	the	inter	medi	iate s	ionale: a	enerate, delete and propagate for a hipary
	adder and expression	, 101 m 9n	d cs	arry	out ii	n teri	ns of the	above (Anril/May 2018) BTI 5
	adder and express su			ar r y	outh		ns or the	above. (hprin/hay 2010) Dills
	Generate (G)	= A	В					
	Dropogato (D)	- /		P				
	Propagate (P)	- /		D				
8.	Delete = A R							
	Delete - A D							
			8	CI	C	P)	= G	+ PC
$C_{o}(G, F) = G + FC_{i}$			ⁱ					
				20 020				
				S(<i>G</i> ,	P)	$= P \epsilon$	$\Theta C_{:}$
	Draw the topology of	a for	ur b	it rip	ople c	arry	adder.B	TL3
	$A_0 B_0 A_1 B_1 A_2 B_2 A_3 B_3$							
	ΤΤ ΤΤ ΤΤ ΤΤ							
9.	$C_{i,0}$ $C_{o,0}$ $C_{o,1}$ $C_{o,2}$ $C_{o,3}$							
	V I		*			8	62	↓
	So		S1			5	22	Sa
	What is the worst as	o nu	ana	ratio	n dol	ovin	on N hit	ninnle comm odden? DTI 2
10	what is the worst cas	e pro	opaş	gauo	ii uei	ay m		ripple carry adder: B1L2
10.	$t = (N_{-}1)t + t$							
	adder (14 1/car	ry ·	sur	n				
11	What are the main st	ages	of a	n ar	ray n	nulti	olier? BT	Ľ1
11.	The main stages of an array multiplier are: partial product generation, partial product accumulation							
	and final addition.		2	1		1	1	
	What is meant by clu	stere	d vo	oltag	e-sca	ling?	BTL2	
12	Clustered voltage-scal	ing is	sar	nethc	od of	distri	buting a	wide range of supply voltages inside a block.
12.	In this technique, each path starts with the high supply voltage and switches to the low supply when							
	delay slack is available).					~~PP•J	

REG	GULATION: 2017		ACADEMIC YEAR : 2020-2021
	Write the inverting propert	ty associated with a full ad	der. BTL3
13.	$C_{i} \rightarrow FA$ FA S $\bar{S}(A, B)$	$\rightarrow C_o \equiv C_i \rightarrow c$ $B, C_i = S(\overline{A}, \overline{B}, \overline{C_i})$	$\begin{array}{ccc} A & B \\ \hline \bullet & \bullet \\ \hline \bullet & \hline \bullet & \bullet \\ \hline \bullet$
	C ₀ (A, I	$(B,C_i) = C_o(A,B,C_i)$)
	Illustrate binary multiplica	tion using a simple exam	ple. Specify the bit size of the inputs and
	the partial products.BTL3		
	101010	Multiplicand	
1.4	x 1011	Multiplier	
14.	101010		
	101010		
	0 0 0 0 0	Partial products	
	+ 101010		
	111001110	Result	
	What is booth's recoding? Booth's recoding reduces the consecutive bits at most one to reduce the number of addit Partial Product	Draw a partial product sel number of partial products bit will be 1 or -1. Reducing tions, which leads to a speed Selection Table	ection table for the same. BTL2 to at most half. It ensures that for every two g the number of partial products is equivalent lup as well as an area reduction.
	Multiplier Bits	Recoded Bits	
15	000	0	
15.	001	+Multiplicand	
	010	+Mutiplicand	
	011	+2xMultiplicand	
	100	-2xMultiplicand	
	101	-Multiplicand	
	110	-Multiplicand	
	111	0	
	What is the necessity of a le	vel converter? Draw a sim	pple circuit of the same. BTL3
16	the lower power supply has t	to drive a gate at the higher	voltage If a gate supplied by VDDI drives
10.	agate at VDDH, the PMOS	transistor never turns off, re	esulting in static current and reduced output
	swing. A level conversion p	performed at the boundaries	s of supply voltage domains prevents these
	problems.		
17.	What method is adopted to	reduce power in idle mode	e? BTL4
	A common method to reduc	repower in idle mode is clured off (or gated) when	lock gating. In this method, the main clock
	connection to a module is the	and on (or galed) whether	ver the block is full. However clock gatting

JIT-JEPPIAAR/ECE/Dr.R.Uma/IIIrd Yr/SEM 06 /EC8095/VLSI DESIGN/UNIT 1-5/QB+Keys/Ver2.0

REG	GULATION: 2017 ACADEMIC YEAR: 2020-2021
	What are the parts of a DVS system? BTL3
	A practical implementation of the DVS system consists of the following:
	• A processor that operate at a wide variety of supply voltages.
24.	• A power regulation loop that sets the minimum voltage necessary for operation at a desired
	• frequency
	• An operating system that calculates the desired frequencies to meet required throughputs and
	task completion deadlines.
	Illustrate threshold voltage control in an inverter. BTL4
	Substrate bias is the control knob that allows us to vary the threshold voltages dynamically. In order
	to do so, we have to operate the transistors as four- terminal devices. Variable threshold voltage
	scheme can accomplish a variety of goals:
25.	• It can lower the leakage in standby mode
	• It can compensate for threshold voltage variations across the chip during normal operation of
	the circuit
	• It can throttle the throughput of the circuit to lower both the active and leakage power based
	on performance requirements
26	What is the total time delay for a rinnle carry Adder? BTI 2
20	Tadder = $(N-1)$ tcarry + tsum
-	Write down the Expression for the total propogation delay in an n bit carry bypass Adder
27	BTL2
	Tp = tset up + M tcarry + (N/M-1) tbypass + M tcarry + tsum.
	Why is static adder circuit slow? BTL2
	A static adder ckt is slow as.
	• Long chains of series PMOS transistors are present in both carry & Sum generation circuit
28.	 Intrinsic load capacitance of the Co signal is large & consists of 2 diffusion & 6 gate
	canacitances plus the wiring g canacitances
	 Carry generation ckt requires 2 inverting stages per bit
	 Sum generation ekt requires an extra logic stage
	• Sum generation extrequites an extra logic stage
	Draw the structure of a sleep transistor. DTL4
	Skeep Signel —
	Pullup Network
29.	
	V
	Pulldown Network
	Sleep Signal
	GND
30	What is the advantage of Dynamic adder design? BTL2
	Reduced capacitance of dynamic circuitry results in substantial speed up over static implementation.
	Determine propagation delay of n-bit carry select adder. (May/June 2016) BTL3
31.	tadd = tsetup + M tcarry + (N / M) tmax + tsum
	where tsetup,tsum,tmax are fixed delays. N and M represents the total number of bits and no.of bits
	per stage respectively. tcarry is the delay of carry through a single full adder cell.

JIT-JEPPIAAR/ECE/Dr.R.Uma/IIIrd Yr/SEM 06 /EC8095/VLSI DESIGN/UNIT 1-5/QB+Keys/Ver2.0

REC	ULATION: 2017 ACADEMIC YEAR: 2020-2021			
	Give the application of high speed adder. (April / May 2017). BTL4			
	High speed Adders will reduce the hardware complexity and make justice with Speed Power, Area			
and Accuracy metrics. Adders are one of the key components in arithmetic circuits. Appr				
52.	can increase performance or reduce power consumption with a simplified or inaccurate circuit in			
	application contexts where strict requirements are relayed. The potential application is in the DSP			
	application contexts where strict requirements are relaxed. The potential application is in the DST application for portable devices such as call phones and lantons.			
	application for portable devices such as cell phones and raptops.			
	Draw a bit sliced datapath organization / what is meant by bit-sliced data path organization?			
	List out the components of data path. (April / May 2017). B1L2			
	Datapaths are often arranged in bit sliced organization instead of operating on single-bit digital			
	signals. The data in a processor are arranged in a word based fashion. A 32 bit processor operates as			
	data words that are 32bits word wide. This is reflected in the organization of datapath. Since the same			
	operation frequently has to be performed on each bit of the data word, the datapaths consist of 32 bit			
	slices, each operating on single bit, hence the term bit-sliced.			
33.	Control			
	Л			
	V			
	Bit 3			
	ੋਟੋ ┗┓╯ "ਤੋਂ ਤੋਂ ਤੋਂ ਤੋਂ ਤੋਂ ਤੋਂ ਤੋਂ Bit 1 ┗┓╯ ਤੋਂ			
	Bit 0			
34	Write the principle of any one fast multiplier? (Nov/Dec 2016) BTL2			
54.	Booth multiplier is a radix -4 multiplication scheme, which examines 3 bits of the multiplicand at			
	a time to determine whether to add 0,1,-1,2,-2 of that rank of the multiplicand.			
	Define throughput. BTL2			
25	A metric called throughput is often used as a measure of the utilization of a microprocessor system.			
55.	The throughput is the number of operations for the number of instructions performed over a unit			
	period of time. The throughput is typically described in terms of either millions of operations per			
	second or million of instructions per second.			
	PART * B			
	Explain the concept of a carry look ahead adder with neat diagram. (13M)(May/June			
	2014,2016) (Nov/Dec 2016,2019) B1L3			
1.	Answer: Page 4.25-4.28-Dr.R.Uma			
	Carry Look ahead Adder- Cicuit-carry look ahead generator (2			
	Definition of carry generate and carry propagate (5M)			
	Manchester carry style- static circuit- dynamic circuit (4M)			
	Discuss the details about power and speed trade off.(13M) (April/May 2017,2018) BTL2			
	Answer: Page 4.56-4.71-Dr.R.Uma			
	Optimization during Enable time- Optimization of targeted dissipation source (3M)			
	Design time power Reduction Techniques (8M)			
2.	Reducing supply voltage-Logical Optimization- Architectural optimization-power Reduction using			
	pipelining-Multiple Supply Voltage- Module level voltage reduction- Multiple threshold circuits-			
	Reducing switching capacitance through transistor sizing-Reducing switching activity by resource			
	allocation- Reducing glitching through path balancing- Multiple supply voltage			
	Run time nower Management (2M)			
	Dynamic supply voltage Scaling-Variable threshold CMOS (VTCMOS)			
	Dyname suppry voluge beaming variable uneshold Civids (victions)			

REG	GULATION : 2017 ACADEMIC YEAR : 2020-2	021
	Explain the concept of a high speed adder.(13M) (Nov/Dec 2016,2019) (May/June 20	16)BTL2
	Answer: Page 4.15-4.34-Dr.R.Uma	
3.	Binary Adder- Logic Design consideration-Ripple carry Adder	(3M)
	Carry Bypass Adder-Delay Calculation- Advantages of CByA- Disadvantages of CByA	(4M)
	Carry Skip Adder- Delay Calculation- Advantages of CSA-Disadvantages of CSA	(3M)
	Carry Select Adder- Delay Calculation- Advantages of CSelA- Disadvantages of CSelA	(3M)
	Explain the structure of a Barrel Shifter.(13M) (April/May 2015,2018, Nov/Dec	2015,2018)
	BTL2	
1	Answer: Page 4.51- 4.56- Dr.R.Uma	
4.	Shift and Rotate Operation-	(4M)
	4 bit rotate right network	(3M)
	4 bit rotate left network	(3M)
	Barrel shifter working operation	(3M)
	Design a divider circuit and write down its working function and discuss their fea	tures.(13M)
	BTL5	·
	Restoring Division-Algorithm for restoring Division	(3M)
5.	Block diagram for 4 bit binary divider restoring divider	(2M)
	Cycles of operation	(2M)
	Non restoring Division- Algorithm for Non restoring Division	(3M)
	Block Diagram for non-restoring division algorithm	(2M)
	Cycles of Operation	(1M)
	PART * C	
	Design a 4 V 4 survey multiplier and write down the source for delay (15W)	MarylInna
	Design a 4 X 4 array multiplier and write down the equation for delay. (1511)	(May/June
	2010,2010 D1L0 Answer: Dege 4 35 4 38 Dr D Ume	
1.	Multiplier Derellel error multiplier design Regis Principles of Multiplication	$(A\mathbf{M})$
	Unsigned 4x4 array multiplier using PCAs	$(4\mathbf{M})$
	Unsigned $4x4$ array multiplier using CSAs	$(4\mathbf{M})$
	Delay Calculation	(4M)
	Explain the operation of booth multiplication with suitable examples? Justify	how booth
	algorithms speed up the multiplication process (15M) (Nov/Dec 2016 2019) BTI 2	now booth
	Answer Page 4 41.4 43. Dr R Uma	
2	Booth Multiplier Concepts	$(4\mathbf{M})$
2	Actions during booth Multiplication	(4M)
	Structure of Booth Multiplier	(3M)
	Justification for speed up process	(4M)
	Explain the concept of modified booth multiplier with suitable example. (15M)	(April/May
	2017,2018)BTL2	
	Answer: Page 4.41-4.43- Dr.R.Uma	
3	Booth Multiplier Concepts	(4M)
	Actions during booth Multiplication	(4M)
	Structure of Booth Multiplier	(3M)
	Justification for speed up process	(4M)

UNIT V – IMPLEMENTATION STRATEGIES AND TESTING

FPGA	Building Block Architectures, FPGA Interconnect Rou	iting Procedures. Design for Testability: Ad				
Hoc T	Hoc Testing, Scan Design, BIST, IDDQ Testing, Design for Manufacturability, Boundary Scan.					
	PART * A					
O N						
Q.No.	Questions					
1	What is an FPGA? (Nov/Dec 2014,2019) BTL2					
1.	FPGA is Field Programmable Gate Array that consists	of an array of anywhere from 64 to 1000s of				
	What is SOG? (Nov/Dec 2019) BTL2	i logic blocks.				
2.	A channelless gate-array is called sea-of-gates (SOG) a	array. The core area of the die is completely				
	filled with an array of base cells (the base array).					
3.	Compare FPGA and CPLD? (April/May 2019) BTLA CPLD's have a much higher capacity than simple PLD be programmed into them. A typical CPLD is equir development of these devices followed simple PLD a density chips to be implemented. There are several for programming capability. CPLDs typically come in a complexity. FPGA are different from simple PLDs and CPLDs greatest logic capacity. FPGAs are consists of an array groups that are sometimes called logic blocks. Two b course grained .The course grained FPGA has large log smaller logic blocks. FPGAs are come in packages up to	A Ds, permitting more complex logic circuits to valent of from 2 to 64 simple PLDs. The as advances in technology permitted higher ms of CPLD, which vary in complexity and 44 to 160 pin packages depending on the in their internal organization and have the of anywhere from 64 to 1000s of logic gate asic classes of FPGAs are fine grained and gic blocks and fine grained FPGAs has much 0 1000 pins or more.				
Differentiate CBIC & Gate array logic? (April/May 2019) BTL4						
	CBIC	Gate array logic				
	Cell-based IC uses predesigned logic cells (AND gates, OR gates, multiplexers, and flip-flops, for example)	ASIC the transistors are predefined on the silicon wafer.				
4.	CBIC means a standard-cell-based ASIC	it is often called a masked gate array (MGA).				
	The standard-cell areas in a CBIC are built of rows of standard cells. The standard-cell areas may be used in combination with larger predesigned cells, known as megacells.	The logic cells in a gate-array library are often called macros.				
5.	 List out three main parts of FPGA & what is PMS? (CLB-Configurable Logic Block IOB-Input Output Block PMS-Programmable Switch Matrix 	Nov/Dec 2018) BTL1				
6.	List the types of ASIC?/ State the different types of BTL1 • Full-Custom ASICs • Semicustom ASICs : - Standard-Cell–Based ASICs	f ASICs. (May/June 2014) (Nov/Dec 2018)				

REC	GULATION: 2017	ACADEMIC YEAR : 2020-2021					
	 Gate-Array–Based ASICs 						
	Channeled Gate Array						
	Channelless Gate Array						
	• Structured Gate Array						
	Programmable ASICs, for which all of the logic	c cells are predesigned and none of the mask layers					
	are customized.						
	– Programmable Logic Devices						
	 Field-Programmable Gate Arrays 						
	What is Full custom ASIC?/What are the feat	ures of full custom ASIC? (April/May 2015 2018)					
	(May/June 2016) BTL2						
	To modify according to a customer's individual requirements. All mask layers are customized in a						
	full custom ASIC						
7	• Generally the designer lays out all cells h	ny hand					
1.	 Some automatic placement and routing m 	ay he done					
	 Some automatic pracement and fouring in Critical (timing) paths are usually laid on 	t completely by hand					
	• Cliffical (unling) paths are usually faid ou Full sustem design offers the highest performance	a and lowest part cost (smallest dia size) for a given					
	design. The manufacturing load time (the time	it takes just to make an IC, not including design					
	time) is typically eight weeks for a full custom I	The takes just to make an IC—not metuding design γ					
	Write the objectives and Coals of System Part						
	The goal of partitioning is to divide this part of t	he system so that each partition is a single ASIC. To					
	the goal of partitioning is to divide this part of the system so that each partition is a single ASIC. To do this we may need to take into account any or all of the following chiestiyas:						
8.	do this we may need to take into account any of a	an of the following objectives.					
	 A maximum number of ASICs 						
	 A maximum number of connections for each ASIC 						
	• A maximum number of connections for each ASIC						
	• A maximum number of total connections	between all ASICs					
9.	what is JTAG? B1L2						
10	Joint Test Action Group (JIAG)						
10.	what is fully PCI in Spartan-II FPGA? B1L2						
	Fully Peripheral Component Interface (PCI) used	to interface components.					
	Differentiate fine-grain and coarse-grain arch	itecture of FPGA B1L4					
	Fine-grained Architecture	Coarse-grained Architecture					
		Manipulate groups of bits via complex					
	Manipulate data at the bit level	functional units such as ALUs (arithmetic					
		logic units) and multipliers					
	Designers can implement bit manipulation	Reconfigurable resources are wasted during					
	tasks without wasting reconfigurable	data manipulation					
11.	resources	I					
	For large and complex calculations	Fewer coarse-grained PEs are required to					
	numerous fine-grained PEs are required	implement a basic computation					
	to implement a basic computation						
	Much slower clock rates	Faster					
	Extremely costly relative to coarse-grained	Less Expensive					
	architectures	Less Lapensite					
	Supports partial array configuration and is						
	dynamically reconfigurable during	Both partially and dynamically reconfigurable					
	application execution						

REC	GULATION : 2017	ACADEMIC YEAR : 2020-2021					
	State the Xilinx FPGA design flow.BTL1						
	Specification						
12.	• VHDL description - Functional simulation						
	• Synthesis - Post-synthesis simulation						
	• Implementation - Timing simulation						
	 Configuration - On chin testing 						
	What are the different types of interconnections n	resent in Xilinx FPGA?BTI 2					
	Direct interconnect . Adjacent CLBs are wired tog	ether in the horizontal or vertical direction. The					
	most efficient interconnect.						
13.	General-nurnose interconnect: used mainly for longer connections or for signals with a moderate						
	fanout						
	Long line interconnect: for time critical signals	(e.g. clock signal need be distributed to many					
	CLBs)	(e.g. crock signal need be distributed to many					
	What is meant by speed grading?BTL?						
	Most of the FPGA header short chip according to s	speed is called speed binning or speed grading.					
	According to Xilinx FPGA product. The speed gr	ade specify the transistor switching speed that					
	determines how quickly internal clocked circuits can	be activated.					
	1 J						
14.	Example: XC3S50 -4 PQ 208 C						
	Device Type — Temperature Range:						
	C = Commercial (T _i = 0°C to 85°C)						
	Speed Grade I = Industrial (T = -40°C to +100°C)						
	Package Type Number of Pins						
15	What is meant by BIDA?BTL2						
15.	The Bidirectional Interconnect Buffers (BIDA) restore the logic level and logic strength on long						
	interconnect paths.						
	Define OEM? BTL2						
16.	For any ASIC, a designer needs design-entry software, a cell library and physical design software.						
	Often designers buy that software from FPGA vendor. This is called an Original Equipment						
	Manufacturer (OEM) arrangement.						
	What are the advantages and disadvantages of FP	GA compared to ASIC?BTL4					
	FPGA	ASIC					
	Faster time-to-market since none of the mask	Full custom capability for design since device					
17.	layers are customized	is manufactured to design spees					
17.	Simpler design cycle due to software that handles	Design cycle is not simple.					
	much of the routing, placement, and timing						
	Field reprogramability - A new bit stream can be	Field reprogramability is not possible					
	Design temperature of the house	True door to true receipt					
	Design turnaround is a rew nours	Two days to two weeks					
	Define segmented Channel routing?BTL2						
	FPGA is a channeled architecture. The logic mod	dules which implement various types of logic					
18.	functions are placed in predefined rows. Channels are defined in between rows of logic modules for						
	routing of nets. The rows of logic modules are called tracks. The tracks are divided into different						
	segments which can be connected together by prog	gramming a horizontal antifuse. Each input and					
	output of a logic module is connected to a dedicated	vertical segment. Cross antifuses are located at					

RE	GULATION : 2017 ACADEMIC YEAR : 2020-2021
	the crossing of each horizontal and vertical segment. Programming these antifuses produces a bi-
	directional connection between the horizontal and vertical segments for routing of nets via channels.
	This structure of FPGA is called segmented channel routing.
19.	Differentiate between Altera MAX 9000 and Altera FLEX interconnects architecture. BTL4 The MAX 9000 is a coarse-grained architecture. Complex PLDs with arrays that are themselves arrays of macrocells have a dual-grain architecture. The FLEX architecture is of finer grain than the MAX arrays because of the difference in programming technology. The FLEX horizontal interconnect is much denser than the vertical interconnect creating an aspect ratio of 10:1.
	List the advantages of Global routing. (May/June 2014) BTL2
20.	We typically global route the whole chip (or large pieces if it is a large chip) before detail routing the whole chip (or the pieces). There are two types of areas to global route: inside the flexible blocks and between blocks. The goal of global routing is to provide complete instructions to the detailed router on where to route every net. The objectives of global routing are one or more of the following:
	Minimize the total interconnect length
	 Maximize the probability that the detailed router can complete the routing.
	 Minimize the critical path delay.
	What are feedthrough cells? State their uses. (May/June 2016)BTL2
21.	The term feedthrough cells can refer either to a piece of metal that is used to pass a signal through a
	cell or to a space in a cell, waiting to be used as a feed through.
	What is the standard cell-based ASIC design?(Nov/Dec 2016) BTL2
	In cell based design, the designer reuses the cells that have already been designed and stored in the
22.	library as a part of the current design. Cell – based IC used predesigned logic cells(AND gates, OR
	gates, multiplexers and flip flop). CBIC means standard cell based ASIC. The standard-cell areas in a
	CBIC are built of rows of standard cells. The standard-cell areas may be used in combination with
	What is an antifusa? State its marits and domarits (Nov/Dec 2016) BTL 2
	An antifuse is an electrical device that performs the opposite function to a fuse. Whereas a fuse starts
	with a low resistance and is designed to permanently break an electrically conductive path (typically
	when the current through the path exceeds a specified limit), an antifuse starts with a high resistance
	and is designed to permanently create an electrically conductive path (typically when the voltage
	across the antifuse exceeds a certain level).
	Demerits: The size of an antifuse is limited by the resolution of the lithography equipment used to makes ICs. The Actel antifuse connects diffusion and polysilicon, and both these materials are too registrive for use as signal interconnects. To connect the antifuse to the metal layers requires context.
23	that take up more space than the antifuse itself reducing the advantage of the small antifuse size
23.	However, the antifuse is so small that it is normally the contact and metal spacing design rules that
	limit how closely the antifuses may be packed rather than the size of the antifuse itself.
	Merits: There are two advantages of a metal-metal antifuse over a poly-diffusion antifuse.
	The first is that connections to a metal-metal antifuse are direct to metal-the wiring layers.
	Connections from a poly-diffusion antifuse to the wiring layers require extra space and create
	additional parasitic capacitance. The second advantage is that the direct connection to the low-
	resistance metal layers makes it easier to use larger programming currents to reduce the antifuse
	standard deviation of about 10 W) using a programming current of 15 mA as opposed to an everage
	antifuse resistance of 500 W (with a programming current of 5 mA) for a poly-diffusion antifuse
24	What is meant by CBIC? (April/May 2017) BTL2
<u></u>	Cell – based IC used predesigned logic cells (AND gates, OR gates, multiplexers and flipflop). CBIC
·	

REG	GULATION : 2017ACADEMIC YEAR : 2020-2021		
	means standard cell based ASIC. The standard-cell areas in a CBIC are built of rows of standard		
	cells. The standard-cell areas may be used in combination with larger predesigned cells known as		
	megacells.		
25.	Name the elements in a Configurable Logic Block (April/May 2017). BTL1		
	Flip flops to store data and Look up tables and Multiplexers to implement logic.		
ГАКІ " В			
1.	Explain about the different types of ASIC with neat diagram. (13M) (April/May 2017,2019)		
	BTL2		
	Answer: Page: 5.2-5.15- Dr.R.Uma		
	Application Specific Integrated Circuits- Examples- Advantages- Types (3M)		
	Full custom ASIC- Semi-custom ASIC- Standard Cell Based ASICs- Gate array based ASICs (4M)		
	Channelled Gate Array- Channelless Gate Array- Structured Gate Array (2M)		
	Field Programmable Gate Array- Programmable Logic Devices Structure-Programmable Array		
	Logic- Programmable Logic Devices (4M)		
	Describe the architecture of FPGA with Configurable Logic Block and Programmable		
	interconnect technology. (13M) (April/May 2015,2018) (Nov/ Dec 2016,2019)BTL2		
	Answer: Page: 5.22-5.38- Dr.R.Uma		
2	FPGA building block Architectures- Input Output Blocks(3M)		
۷.	Programmable Interconnects- Direct Interconnects between Adjacent CLB (3M)		
	ACT 1 Series FPGA- ACT 1 Logic Module-ACT 2 Family- IO pad Drivers- Clock Networks-		
	ALTERA-Logic Array Blocks- Macrocells (3M)		
	Configurable Logic Blocks- Function Generators- I/O Blocks- Programmable Interconnect-		
	Programmable Switch Matrix (4M)		
	With a neat Flowchart, explain the ASIC design flow. (13M) (May/June 2014)BTL4		
3	Answer: Page: 5.38-5.40-Dr.R.Uma		
5.	Design Entry- Logic Synthesis- System Partitioning- Pre layout simulation- Floor Planning-		
	Placement- Routing- Extraction- Post layout simulation (9M)		
	Flow chart Diagram (4M)		
	Write explanatory notes on FPGA (13M) (May/June 2014) BTL2		
	Answer: Page: 5.22-5.38- Dr.R.Uma		
4	FPGA building block Architectures- Input Output Blocks (4M)		
	ACT 1 Series FPGA- ACT 1 Logic Module-ACT 2 Family- IO pad Drivers- Clock Networks-		
	ALTERA-Logic Array Blocks- Macrocells (4M)		
	Configurable Logic Blocks- Function Generators- I/O Blocks- Programmable Interconnect-		
	Programmable Switch Matrix (5M)		
5.	Explain features of semi-custom ASIC and its types.(I3M) (April/May 2015)BTL2		
	Answer: Page: 5.2-5.15- Dr.R.Uma		
	Semi-custom ASIC- Standard Cell Based ASICs- Gate array based ASICs (5M)		
	Channelled Gale Array- Channelless Gale Array- Structured Gale Array (4M)		
	Logic Programmable Logic Devices Structure-Programmable Array (4M)		
	$\frac{1}{(4M)}$		
	FARI * C		
	Write brief notes on		
1.	a. Semi-custom ASIC		
	b. Full Custom ASIC. (15M)(May/June 2016) (Nov/ Dec 2016,2019) BTL2		
	Answer: Page: 5.2-5.15- Dr.R.Uma		

REGULATION : 2017 ACADEMIC YEAR : 2020-2		
	Application Specific Integrated Circuits- Examples- Advantages- Types (4	M)
	Full custom ASIC- Semi-custom ASIC- Standard Cell Based ASICs- Gate array based ASICs (51	M)
	Channelled Gate Array- Channelless Gate Array- Structured Gate Array (2)	M)
	Field Programmable Gate Array- Programmable Logic Devices Structure-Programmable A	rray
	Logic- Programmable Logic Devices (4	M)
	With neat sketch explain the CLB,IOB and programmable interconnects of an FPGA dev	vice.
2	(15M) (May/June 2016) BTL2	
	Answer: Page: 5.22-5.38- Dr.R.Uma	
	FPGA building block Architectures- Input Output Blocks (3	3M)
	Programmable Interconnects- Direct Interconnects between Adjacent CLB (3	M)
	ACT 1 Series FPGA- ACT 1 Logic Module-ACT 2 Family- IO pad Drivers- Clock Netwo	rks-
	ALTERA-Logic Array Blocks- Macrocells (3	3M)
	Configurable Logic Blocks- Function Generators- I/O Blocks- Programmable Interconn	ect-
	Programmable Switch Matrix (4	4M)
	Write short notes on routing procedures involved in FPGA interconnect. (15M)(April/M	May
3	2017)BTL2	-
	Answer: Page: 5.17-5.22-Dr.R.Uma	
	Routing Procedures- ACTEL Anti fuse Interconnect-	5M)
	Metal-Metal anti fuse-	IM)
	Actel Act Interconnect Scheme (2	IM)