
CS8484-SOFTWARE ENGINEERING Department of CSE

1

2020-2021 Jeppiaar Institute of Technology

 UNIT V

 PROJECT MANAGEMENT

Software Project Management: Estimation – LOC, FP Based Estimation, Make/Buy

Decision COCOMO I & II Model – Project Scheduling – Scheduling, Earned Value Analysis

Planning – Project Plan, Planning Process, RFP Risk Management – Identification,

Projection - Risk Management-Risk Identification-RMMM Plan-CASE TOOLS

5.1 SOFTWARE PROJECT MANAGEMENT:

Effective software project management focuses on the four P’s:

 People

 Product

 Process

 Project

5.1.1 People

 The “people factor” is so important that the Software Engineering Institute has developed a People

Capability Maturity Model (People-CMM), in recognition of the fact that “every organization

needs to continually improve its ability to attract, develop, motivate, organize, and retain the

workforce needed to accomplish its strategic business objectives”.

 The people capability maturity model defines the following key practice areas for software people:

 staffing

 communication and coordination

 work environment

 performance management

 training

 compensation

 competency analysis and development

 career development

 workgroup development

 team/culture development

5.1.2 Product

Before a project can be planned

 product objectives and scope should be established

 alternative solutions should be considered

 Technical and management constraints should be identified.

 This activity begins as part of the system engineering or business process engineering and

continues as the first step in software requirements engineering.

 Objectives identify the overall goals for the product (from the stakeholders’ points of view)

without considering how these goals will be achieved.

 Scope identifies the primary data, functions, and behaviors that characterize the product, and more

important, attempts to bound these characteristics in a quantitative manner.

CS8484-SOFTWARE ENGINEERING Department of CSE

2

2020-2021 Jeppiaar Institute of Technology

5.1.3 The Process

 A software process provides the framework from which a comprehensive plan for software

development can be established.

 A small number of framework activities are applicable to all software projects, regardless of their

size or complexity.

 A number of different task sets—tasks, milestones, work products, and quality assurance points—

enable the framework activities to be adapted to the characteristics of the software project and the

requirements of the project team.

 Finally, umbrella activities—such as software quality assurance, software configuration

management, and measurement—overlay the process model.

 Umbrella activities are independent of any one framework activity and occur throughout the

process.

5.1.4 The Project:

 In order to manage a successful software project, you have to understand what can go wrong so

that problems can be avoided.

 To avoid project failure, a software project manager and the software engineers who build the

product must avoid a set of common warning signs, understand the critical success factors that

lead to good project management, and develop a common sense approach for planning,

monitoring, and controlling the project.

5.2 SOFTWARE PROJECT ESTIMATION

 Software project estimation is a form of problem solving, and in most cases, the problem to be

solved (i.e., developing a cost and effort estimate for a software project) is too complex to be

considered in one piece.

 The decomposition approach was discussed from two different points of view:

i) Decomposition of the problem and

ii) Decomposition of the process.

 Estimation uses one or both forms of partitioning.

5.2.1 Software Sizing

The accuracy of a software project estimate is predicated on a number of things:

(1) The degree to which you have properly estimated the size of the product to be built

(2) The ability to translate the size estimate into human effort, calendar time, and dollars

(a function of the availability of reliable software metrics from past projects);

(3) The degree to which the project plan reflects the abilities of the software team

(4) The stability of product requirements and the environment that supports the software

engineering effort.

The sizing can be estimated using two approaches:

 If a direct approach is taken, size can be measured in lines of code (LOC).

 If an indirect approach is chosen, size is represented as function points (FP).

Putnam and Myers [Put92] suggest four different approaches to the sizing problem:

CS8484-SOFTWARE ENGINEERING Department of CSE

3

2020-2021 Jeppiaar Institute of Technology

 Fuzzy logic sizing.

o This approach uses the approximate reasoning techniques that are the cornerstone of fuzzy logic.

o To apply this approach, the planner must identify the type of application, establish its magnitude

on a qualitative scale, and then refine the magnitude within the original range.

 Function point sizing. The planner develops estimates of the information domain characteristics.

 Standard component sizing. Software is composed of a number of different “standard

components” that are generic to a particular application area.

For example:

 The standard components for an information system are subsystems, modules, screens, reports,

interactive programs, batch programs, files, LOC, and object-level instructions.

 The project planner estimates the number of occurrences of each standard component and then

uses historical project data to estimate the delivered size per standard component.

Change sizing.

 This approach is used when a project encompasses the use of existing software that must be

modified in some way as part of a project.

 The planner estimates the number and type (e.g., reuse, adding code, changing code, and deleting

code) of modifications that must be accomplished.

5.2.2 Problem-Based Estimation:

LOC and FP data are used in two ways during software project estimation:

(1) As estimation variables to “size” each element of the software and

(2) As baseline metrics collected from past projects and used in conjunction with estimation

variables to develop cost and effort projections.

LOC or FP is then estimated for each function.

 Baseline productivity metrics are then applied to the appropriate estimation variable, and cost or

effort for the function is derived.

 Function estimates are combined to produce an overall estimate for the entire project.

 Using historical data the project planner expected value by considering following variables.

1. Optimistic

2. Most likely

3. Pessimistic

 A three-point or expected value can then be computed.

 The expected value for the estimation variable (size) S can be computed as a weighted average of

the optimistic(sopt), most likely (sm), and pessimistic (spess) estimates. For example,

Where,

 (size) S

 optimistic(sopt),

 most likely (sm), and

 pessimistic (spess)

CS8484-SOFTWARE ENGINEERING Department of CSE

4

2020-2021 Jeppiaar Institute of Technology

LOC based Estimation:

CS8484-SOFTWARE ENGINEERING Department of CSE

5

2020-2021 Jeppiaar Institute of Technology

Example of LOC based Estimation:

Solution:

For estimating the given application we consider each module as separate function and

corresponding lines of code can be estimated in the following table as

Function Estimated LOC

User interface and control facilities (UICF) 2500

Two-dimensional geometric analysis (2DGA) 5600

Three-dimensional geometric analysis (3DGA) 6450

Database management (DBM) 3100

Computer graphics display facilities (CGDF) 4740

Peripheral control function (PCF) 2250

Design analysis modules (DAM) 7980

Estimated lines of code 32620

CS8484-SOFTWARE ENGINEERING Department of CSE

6

2020-2021 Jeppiaar Institute of Technology

5.3 AN EXAMPLE OF FP-BASED ESTIMATION

 Decomposition for FP-based estimation focuses on information domain valuesrather than software

functions.

 Each of the complexity weighting factors is estimated, and the value adjustmentfactor is computed.

CS8484-SOFTWARE ENGINEERING Department of CSE

7

2020-2021 Jeppiaar Institute of Technology

 The organizational average productivity for systems of this type is 6.5 FP/pm.

 Based on a burdened labour rate of $8000 per month, the cost per FP is approximately

$1230.Based on the FP estimate and the historical productivity data, the total estimated project

cost is $461,000 and the estimated effort is 58 person-months.

5.4 THE MAKE/BUY DECISION

Software engineering managers are faced with a make/buy decision that can be further

complicated by a number of acquisition options:

(1) Software may be purchased (or licensed) off-the-shelf,

(2) “full-experience” or“partial-experience” software components may be acquired andthen

modified and integrated to meet specific needs, or

(3) Software may be custombuilt by an outside contractor to meet the purchaser’s specifications.

5.4.1 Creating A Decision Tree

For example, figure 5.1depicts a decision tree for a softwarebasedsystem x.

In this case, the software engineering organization can

(1) buildsystem x from scratch,

(2) reuse existing partial-experience components to constructthe system,

(3) buy an available software product and modify it to meet local needs,or

(4) contract the software development to an outside vendor.

 The project planner estimates that a difficult development effort will cost $450,000.

 A “simple” development effort is estimated to cost $380,000. The expected value for cost,

computed along any branch of the decision tree, is

CS8484-SOFTWARE ENGINEERING Department of CSE

8

2020-2021 Jeppiaar Institute of Technology

Figure 5.1 A Decision Tree To Support The Make/Buy Decision

 Following other paths of the decision tree, the projected costs for reuse, purchase, and contract,

under a variety of circumstances, are also shown. The expected costs for these paths are

 Based on the probability and projected costs that in Figure , the lowest expected cost is the

“buy” option.

5.4.2 Outsourcing

 Outsourcing is extremely simple. Software engineering activities are contracted to a third party

who does the work at lower cost and, hopefully, higher quality.

 The decision to outsource can be either strategic or tactical.

 At the strategic level, business managers consider whether a significant portion of all software

work can be contracted to others.

 At the tactical level, a project manager determines whether part or all of a project can be best

accomplished by subcontracting the software work.

Benefits of outsourcing:

 If the software is outsourced then people and resource utilization can be reduced.

Drawbacks of outsourcing:

 The trend of outsourcing will be continued in software industry in order to survive in competitive

world.

5.5 THE COCOMO I MODEL

 COCOMO is one of the most widely used software estimation models in the world. This model is

developed in 1981 by Barry Boehm to give an estimate of the number of man-months it will take

CS8484-SOFTWARE ENGINEERING Department of CSE

9

2020-2021 Jeppiaar Institute of Technology

to develop a software product. COCOMO predicts the efforts and schedule of a software product

based on size of the software. COCOMO stands for "ConstructiveCostMOdel".

 COCOMO has three different models that reflect the complexity –

 Basic model

 Intermediate model

 Detailed model.

 Similarly there are three classes of software projects.

1) Organic mode: In this mode, relatively small, simple software projects with a small

team are handled. Such a team should have good application experience to less rigid requirements.

2) Semi-detached projects: In this class an intermediate projects in which teams with

mixed experience level are handled. Such projects may have mix of rigid and less than rigid

requirements.

3) Embedded projects: In this class, projects with tight hardware, software and

operational constraints are handled.

Let us understand each model in detail.

1) Basic model: The basic COCOMO model estimates the software development effort using only

Lines of Code. Various equations in this model are –

Where E is the effort applied in person-months.

D is the development time in chronological months.

KLOC means kilo line of code for the project.

P is total number of persons required to accomplish the project.

The coefficients ab, bb, cb, dbfor three models are as given below.

Figure 5.2 Coefficients for three models

Merits of basic COCOMO model

Basic COCOMO model is good for quick, early, rough order of magnitude estimates of software

project.

Limitations of basic model

1. The accuracy of this model is limited because it does not consider certain factors for cost

estimation of software. These factors are hardware constraints, personal quality, and experience,

modern techniques and tools.

CS8484-SOFTWARE ENGINEERING Department of CSE

10

2020-2021 Jeppiaar Institute of Technology

2. The estimates of COCOMO model are within a factor of 1.3 only 29 % of the time and within

the factor of 2 only 60 % of time.

Example

Consider a software project using semi-detached mode with 30,000 lines of code. We will obtain

estimation for this project as follows

i) Effort estimation

ii) Duration estimation

iii) Persons estimation

2) Intermediate model

This is an extension of Basic COCOMO model. This estimation model makes use set of "Cost

driver attributes" to compute the cost of software.

Figure 5.3 Cost driver Attributes

 Now these 15 attributes get a 6-point scale ranging from "very low" to "extra high'.

CS8484-SOFTWARE ENGINEERING Department of CSE

11

2020-2021 Jeppiaar Institute of Technology

 These ratings can be viewed as

 The effort multipliers for each cost driver attribute are as given in following table. The product of

all effort multipliers result in "Effort Adjustment Factor" (EAF).

 The formula for effort calculation can be-

E=ai(KLOC) * EAF person months

 The values for ai and bi for various class of software projects are-

Figure 5.4 Various Classes of software projects

 The duration and person estimate is same as in basic COCOMO model. i.e.

Merits of intermediate model

1. This model can be applied to almost entire software product for easy and rough cost

estimation during early stage.

2. It can also be applied at the software product component level for obtaining more

accurate cost estimation.

Limitations of intermediate model

1. The estimation is within 20 % of actual 68 % of the time.

2. The effort multipliers are not dependent on phases.

3. A product with many components is difficult to estimate.

Example

Considera project having 30,000 lines of code which is embedded software with critical

area hence reliability is high. The estimation can be

CS8484-SOFTWARE ENGINEERING Department of CSE

12

2020-2021 Jeppiaar Institute of Technology

P = E/ D

= 191/13

P = 15 persons approximately

3) Detailed COCOMO model

 The detailed model uses the same equations for estimation as the Intermediate Model. But detailed

model can estimate the effort (E), duration (D) and persons (P) of each of development phases,

subsystems, modules.

 The experimentation with different development strategies is allowed in this model.

 Four phases used in detailed COCOMO model are

1. Requirements Planning and Product Design (RPD)

2. Detailed Design (DD)

3. Code and Unit Test (CUT)

4. Integrate and Test (IT)

 The effort multipliers for detailed COCOMO are

Figure 5.5 Effort Multipliers for detailed COCOMO Model

 Using these detailed cost drivers, an estimate is determined for each phase of the life cycle.

5.6 THE COCOMO II MODEL

 COCOMO, for Constructive Cost Model

 COCOMO II is actually a hierarchy of estimation models that address the following areas:

 Application composition model. Used during the early stages of software engineering,when

prototyping of user interfaces, consideration of software andsystem interaction, assessment of

performance, and evaluation of technologymaturity are paramount.

 Early design stage model. Used once requirements have been stabilized andbasic software

architecture has been established.

 Post-architecture-stage model. Used during the construction of the software.

 The COCOMO II models require sizing information. Three different sizing options are available

as part of the model hierarchy:

 object points,

 function points, and

 Lines of source code.

 The COCOMO II application composition model uses object points

CS8484-SOFTWARE ENGINEERING Department of CSE

13

2020-2021 Jeppiaar Institute of Technology

 The object point is an indirect software measure that is computed using counts of the number of

(1) screens (at the user interface), (2) reports, and (3) components likely to be required to build

the application.

 The object point count is then determined by multiplying the original number of object instances

by the weighting factor in the figure and summing to obtain a total object point

count. When component-based development or general software reuse is to be applied, the percent

of reuse (%reuse) is estimated and the object point count is adjusted:

where NOP is defined as new object points.

 To derive an estimate of effort based on the computed NOP value, a “productivity rate” must be

derived.

 Figure 5.6 presents the productivity rate for different levels of developer experience and

development environment maturity.

Figure5.6 Productivity rate for developer experience and environment maturity

PRODUCTIVITY RATE FOR OBJECT POINTS.

 Once the productivity rate has been determined, an estimate of project effort is computed using

 In more advanced COCOMO II models, a variety of scale factors, cost drivers, and adjustment

procedures are required.

5.7 SOFTWARE PROJECT SCHEDULING

Software project scheduling is an action that distributes estimated effort across the planned project

duration by allocating the effort to specific software engineering tasks.

 Figure 5.7 Project Scheduling Process

Identify
Activities

Identify

possible

dependencies

Create
activity

network and
bar charts

Estimate

resources

Assign people to

conduct activities

CS8484-SOFTWARE ENGINEERING Department of CSE

14

2020-2021 Jeppiaar Institute of Technology

5.7.1 Basic Principles:

Like all other areas of software engineering, a number of basic principles guide software project

scheduling:

Compartmentalization. The project must be compartmentalized into a number of manageable

activities and tasks. To accomplish compartmentalization, both the product and the process are

refined.

Interdependency. The interdependency of each compartmentalized activity or task must be

determined. Some tasks must occur in sequence, while others can occur in parallel. Some activities

cannot commence until the work product produced by another is available. Other activities can

occur independently.

Time allocation. Each task to be scheduled must be allocated some number of work units (e.g.,

person-days of effort). In addition, each task must be assigned a start date and a completion date

that are a function of the interdependencies and whether work will be conducted on a full- time or

part-time basis.

Effort validation. Every project has a defined number of people on the software team. As time

allocation occurs, you must ensure that no more than the allocated number of people has been

scheduled at any given time. For example, consider a project that has three assigned software

engineers (e.g., three person-days are available per day of assigned effort4). On a given day, seven

concurrent tasks must be accomplished. Each task requires 0.50 person-days of effort. More effort

has been allocated than there are people to do the work.

Defined responsibilities. Every task that is scheduled should be assigned to a specific team

member.

Defined outcomes. Every task that is scheduled should have a defined outcome. For software

projects, the outcome is normally a work product (e.g., the design of a component) or a part of a

work product. Work products are often combined in deliverables.

Defined milestones. Every task or group of tasks should be associated with a project milestone.

A milestone is accomplished when one or more work products has been reviewed for quality and

has been approved.

Each of these principles is applied as the project schedule evolves.

5.7.2 Scheduling:

 Scheduling of a software project does not differ greatly from scheduling of any multitask

engineering effort. Therefore, generalized project scheduling tools and techniques can be applied

with little modification for software projects.

 Program evaluation and review technique (PERT) and the critical path method (CPM) are

two project scheduling methods that can be applied to software development.

 Both techniques are driven by information already developed in earlier project planning activities:

estimates of effort, a decomposition of the product function, the selection of the appropriate

process model and task set, and decomposition of the tasks that are selected.

CS8484-SOFTWARE ENGINEERING Department of CSE

15

2020-2021 Jeppiaar Institute of Technology

5.7.3.1 Time-Line Charts:

 When creating a software project schedule begin with a set of tasks (the work breakdown

structure).

 If automated tools are used, the work breakdown is input as a task network or task outline. Effort,

duration, and start date are then input for each task. In addition, tasks may be assigned to specific

individuals.

 As a consequence of this input, a time-line chart, also called a Gantt chart, is generated. A time-

line chart can be developed for the entire project. Alternatively, separate charts can be developed

for each project function or for each individual working on the project.

 Figure 5.8illustrates the format of a time-line chart.

Figure 5.8 Format of Time-Line chart

An example time-line chart

 Figure 5.9 An example project table

CS8484-SOFTWARE ENGINEERING Department of CSE

16

2020-2021 Jeppiaar Institute of Technology

5.7.3.2 Tracking the Schedule:

The project schedule becomes a road map that defines the tasks and milestones to be tracked and

controlled as the project proceeds. Tracking can be accomplished in a number of different ways:

 Conducting periodic project status meetings in which each team member reports progress and

problems.

 Evaluating the results of all reviews conducted throughout the software engineering process.

 Determining whether formal project milestones (the diamonds shown in Figure) have been

accomplished by the scheduled date.

 Comparing the actual start date to the planned start date for each project task listed in the resource

table.

 Using earned value analysis to assess progress quantitatively.

 When faced with severe deadline pressure, experienced project managers sometimes use a project

scheduling and control technique called time-boxing.

 The time-boxing strategy recognizes that the complete product may not be deliverable by the

predefined deadline.

 Therefore, an incremental software paradigm is chosen, and a schedule is derived for each

incremental delivery.

 The tasks associated with each increment are then time-boxed.

 This means that the schedule for each task is adjusted by working backward from the delivery date

for the increment. A “box” is put around each task.

 When a task hits the boundary of its time box (plus or minus 10 percent), work stops and the next

task begins.

5.8 EARNED VALUE ANALYSIS

 Earned value analysis (EVA) is technique of performing quantitative analysis of the software

project.

 Earned value system provides a common value scale for every task of software project.

 The EVA acts as a measure for software project progress.

 With the help of quantitative analysis made in EVA, we can know how much percentage of the

project is completed.

To determine the earned value, the following steps are performed:

1. The budgeted cost of work scheduled (BCWS) is determined for each work task represented in the

schedule. During estimation, the work (in person-hours or person-days) of each software

engineering task is planned.

Hence, BCWSi is the effort planned for work task i. To determine progress at a given point along

the project schedule, the value of BCWS is the sum of the BCWSi values for all work tasks that

should have been completed by that point in time on the project schedule.

2. The BCWS values for all work tasks are summed to derive the budget at completion (BAC).

Hence,

CS8484-SOFTWARE ENGINEERING Department of CSE

17

2020-2021 Jeppiaar Institute of Technology

3. Next, the value for budgeted cost of work performed (BCWP) is computed. The value for BCWP

is the sum of the BCWS values for all work tasks that have actually been completed by a point in time

on the project schedule.

Difference between the BCWS and the BCWP:

BCWS - represents the budget of the activities that were planned to be completed

BCWP - represents the budget of the activities that actually were completed.

Given values for BCWS, BAC, and BCWP, important progress indicator scan be computed:

 SPI is an indication of the efficiency with which the project is utilizing scheduled resources.

 An SPI value close to 1.0 indicates efficient execution of the project schedule.

 SV is simply an absolute indication of variance from the planned schedule.

 Provides an indication of the percentage of work that should have been completed by time t.

 Provides a quantitative indication of the percent of completeness of the project at a given point in

time t.

 It is also possible to compute the actual cost of work performed (ACWP).

 The value for ACWP is the sum of the effort actually expended on work tasks that have been

completed by a point in time on the project schedule.

 It is then possible to compute

 A CPI value close to 1.0 provides a strong indication that the project is within its defined budget.

 CV is an absolute indication of cost savings (against planned costs) or shortfall at a particular stage

of a project.

 Thus EVA ultimately helps the project manager to take the appropriate corrective actions.

5.9 PROJECT PLAN:

• Aplan, drawn up at the start of the project, should be used as the driver for the project

• The initial plan should be the best possible plan given the available information. It must be

regularly revised as new information becomes available.

CS8484-SOFTWARE ENGINEERING Department of CSE

18

2020-2021 Jeppiaar Institute of Technology

• PP is the application of knowledge, skills, tools, and techniques to project activities to meet project

requirements.

• Software engineering is a managed process. The software development takes place within an

organization and is subject to a range of schedule, budget, and organizational constraints. Project

planning process:

Establish the project constraints

Make initial assessments of the project parameters

Define project milestones and deliverables

while project has not been completed or cancelled loop

Draw up project schedule

Initiate activities according to schedule

Wait (for a while)

Review project progress

Revise estimates of project parameters

Update the project schedule

Re-negotiate project constraints and deliverables

if (problems arise) then

Initiate technical review and possible revision

end if

end loop

THE PROJECT PLAN:

• The project plan sets out:

– The resources available to the project

– The work breakdown

– A schedule for the work

PROJECT PLAN STRUCTURE:

• Introduction

– Objectives, constraints (e.g., budget, time, etc…)

• Project organization

– People involved and their roles in the team

• Risk analysis

– Possible risks, their likelihood and reduction strategies

• Hardware and software resource requirements

• Work breakdown

– Breaks down the project into activities, identifies milestones, deliverables

• Project schedule

– Activity dependencies, estimated milestone time, people allocation

• Report generation

_ The structure of the project report, when it should be generated must be decided.

CS8484-SOFTWARE ENGINEERING Department of CSE

19

2020-2021 Jeppiaar Institute of Technology

5.10 RISK MANAGEMENT

 The risk denotes the uncertainty that may occur in the choices due to past actions and risk is

something which causes heavy losses.

 Risk management refers to the process of making decisions based on an evaluation of the factors

that threats to the business.

Software Risks:

Two characteristics:

 uncertainty—the risk may or may not happen;

 loss—if the risk becomes a reality, unwanted consequences or losses will occur

 Project risks

 It threatens the project plan, that is, if project risks become real, it is likely that the project schedule

will slip and that costs will increase.

 Project risks identify potential budgetary, schedule, personnel (staffing and organization),

resource, stakeholder, and requirements problems and their impact on a software project.

 Technical risks

 It threatens the quality and timeliness of the software to be produced. If a technical risk becomes

a reality, implementation may become difficult or impossible.

 Technical risks identify potential design, implementation, interface, verification, and

maintenance problems.

 Business risks threaten the viability of the software to be built and often threaten the project or

the product.

Candidates for the top five business risks are

 Building an excellent product or system that no one really wants (market risk),

 Building a product that no longer fits into the overall business strategy for the company

(Strategic risk),

 Building a product that the sales force doesn’t understand how tosell(sales risk),

 Losing the support of senior management due to a change in focus or a change in people

(management risk), and

 Losing budgetary or personnel commitment (budget risks).

 Known risks are those that can be uncovered after careful evaluation of the project plan, the

business and technical environment in which the project is being developed, and other reliable

information sources (e.g., unrealistic delivery date, lack of documented requirements or software

scope, poor development environment).

 Predictable risks are extrapolated from past project experience (e.g., staff turnover, poor

communication with the customer, dilution of staff effort as ongoing maintenance requests)

 Unpredictable risks can and do occur, but they are extremely difficult to identify in advance.

Reactive strategy:

 Reactive risk management is a risk management strategy in which when project gets into trouble

then only corrective action is taken.

 But when such risks cannot be managed and new risks come up one after the other, the software

team flies into action in an attempt to correct problems rapidly.

CS8484-SOFTWARE ENGINEERING Department of CSE

20

2020-2021 Jeppiaar Institute of Technology

Proactive strategy:

 A proactive strategy begins long before technical work is initiated.

 Potential risks are identified, their probability and impact are assessed, and they are ranked by

importance. Then, the software team establishes a plan for managing risk.

 The primary objective is to avoid risk, but because not all risks can be avoided, the team works to

develop a contingency plan that will enable it to respond in a controlled and effective manner.

Various activities that are carried out for risk management are-

1. Risk Identification

2. Risk Projection

3. Risk Refinement

4. Risk mitigation, monitoring and management

5.10.1 Risk Identification

 Risk identification is a systematic attempt to specify threats to the project plan (estimates,

schedule, resource loading, etc.).

 Risks identification can be done by identifying the known and predictable risks.

 There are two distinct types of risks for each of the categories

 Generic risks are a potential threat to every software project.

 Product-specific risks can be identified only by those with a clear understanding of the

technology, the people, and the environment that is specific to the software that is to be built.

 Method for identifying risks:

 One method for identifying risks is to create a risk item checklist.

 The check list can be used for risk identification and focuses on some subset of known and

predictable risks in the following generic subcategories:

 Product size—risks associated with the overall size of the software to be built or modified.

 Business impact—risks associated with constraints imposed by management or the marketplace.

 Stakeholder characteristics—risks associated with the sophistication of the stakeholders and the

developer’s ability to communicate with stakeholders in a timely manner.

 Process definition—risks associated with the degree to which the software process has been

defined and is followed by the development organization.

 Development environment—risks associated with the availability and quality of the tools to be

used to build the product.

 Technology to be built—risks associated with the complexity of the system to be built and the

“newness” of the technology that is packaged by the system.

 Staff size and experience—risks associated with the overall technical and project experience of

the software engineers who will do the work.

Risk Components and Drivers:

 A set of “risk components and drivers” are listed along with their probability of occurrence.

 The U.S. Air Force has published a pamphlet that contains excellent guidelines for software risk

identification and abatement.

 The Air Force approach requires that the project manager identify the risk drivers that affect

software risk components—performance, cost, support, and schedule.

CS8484-SOFTWARE ENGINEERING Department of CSE

21

2020-2021 Jeppiaar Institute of Technology

Performance risk—the degree of uncertainty that the product will meet its requirements and be

fit for its intended use.

Cost risk—the degree of uncertainty that the project budget will be maintained.

Support risk—the degree of uncertainty that the resultant software will be easy to correct, adapt,

and enhance.

Schedule risk—the degree of uncertainty that the project schedule will be maintained and that

the product will be delivered on time.

Assessing Overall Project Risk:

The following questions have been derived from risk data obtained by surveying experienced

software project managers in different parts of the world.

The questions are ordered by their relative importance to the success of a project.

1. Have top software and customer managers formally committed to support the project?

2. Are end users enthusiastically committed to the project and the system/product to be built?

3. Are requirements fully understood by the software engineering team and its customers?

4. Have customers been involved fully in the definition of requirements?

5. Do end users have realistic expectations?

6. Is the project scope stable?

7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?

9. Does the project team have experience with the technology to be implemented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project and on the

requirements for the system/product to be built?

5.10.2 Risk Projection:

Risk projection, also called risk estimation, attempts to rate each risk in two ways—

(1) The likelihood or probability that the risk is real and

(2) The consequences of the problems associated with the risk, should it occur.

Managers and technical staff to perform four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of a risk.

2. Delineate the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.

4. Assess the overall accuracy of the risk projection so that there will be no misunderstandings.

5.10.2.1 Developing A Risk Table:

A risk table provides you with a simple technique for risk projection. A sample risk table is

illustrated in Figure 5.10

 The probability of occurrence of each risk is entered in the next column of the table.

 The probability value for each risk can be estimated by team members individually.

 Next, the impact of each risk is assessed.

 The categories for each of the four risk components—performance, support, cost, and schedule—

are averaged to determine an overall impact value.

 Once the first four columns of the risk table have been completed, the table is sorted by probability

and by impact.

CS8484-SOFTWARE ENGINEERING Department of CSE

22

2020-2021 Jeppiaar Institute of Technology

Figure 5.10 A Risk table for Risk Projection

 High-probability, high-impact risks percolate to the top of the table, and low-probability risks drop

to the bottom. This accomplishes first-order risk prioritization.

 The cutoff line (drawn horizontally at some point in the table) implies that only risks that lie above

the line will be given further attention. Risks that fall below the line are reevaluated to accomplish

second-order prioritization.

Figure 5.11 Probability Of Occurrence Of Risk Factor

Risk and Management Concern

A risk factor that has a high impact but a very low probability of occurrence should not absorb a

significant amount of management time. However, high-impact risks with moderate to high

probability and low-impact risks with high probability should be carried forward into the risk

analysis.

5.10.2.2 Assessing Risk Impact

While assessing the risks impact three factors are considered

 Nature of risk

 Scope of risk

 Timing at which risk occurs.

The nature of the risk indicates the problems that are likely if it occurs. For example, a poorly

defined external interface to customer hardware (a technical risk) will preclude early design and

testing and will likely lead to system integration problems late in a project.

The scope of a risk combines the severity with its overall distribution (how much of the project

will be affected or how many stakeholders are harmed?).

The timing of a risk considers when and for how long the impact will be felt.

U.S. Air Force suggests the following steps to determine the overall consequences of a risk:

CS8484-SOFTWARE ENGINEERING Department of CSE

23

2020-2021 Jeppiaar Institute of Technology

(1) determine the average probability of occurrence value for each risk component;

(2) Determine the impact for each component based on the criteria shown, and

(3) Complete the risk table and analyze the results

The overall risk exposure RE is determined using the following relationship

RE=PXC

where P is the probability of occurrence for a risk, and C is the cost to the project should the risk

occur.

5.10.3 Risk Refinement:

 Risk refinement is a process of specifying the risk. The risk refinement can be represented using

CTC format.

 The CTC stands for condition-transition-consequence.

 The condition is first stated and then based on this condition sub conditions can be derived.

 Then determine the effects of these sub conditions in order to refine the risk. This refinement helps

in exposing the underlying risks.

 This approach makes it easier for the project manager to analyze the risk in greater detail.

5.10.4 Risk Mitigation, Monitoring, and Management(RMMM)

An effective strategy must consider three issues:

 Risk avoidance,

 Risk monitoring, and

 Risk management

Risk Mitigation:

Risk mitigation means preventing the risks to occur (risk avoidance). Following are the steps to

be taken for mitigating the risks.

 Meet with current staff to determine causes for turnover (e.g., poor working conditions, low pay,

and competitive job market).

 Mitigate those causes that are under your control before the project starts.

 Once the project commences, assume turnover will occur and develop techniques to ensure

continuity when people leave.

 Organize project teams so that information about each development activity is widely dispersed.

 Define work product standards and establish mechanisms to be sure that all models and documents

are developed in a timely manner.

Risk Monitoring:

 The project manager monitors factors that may provide an indication of whether the risk is

becoming more or less likely.

 In the case of high staff turnover, the general attitude of team members based on project pressures,

the degree to which the team has jelled, interpersonal Relationships among team members,

potential problems with compensation and benefits, and the availability of jobs within the company

and outside it are all monitored.

 In addition to monitoring these factors, a project manager should monitor the effectiveness of risk

mitigation steps.

CS8484-SOFTWARE ENGINEERING Department of CSE

24

2020-2021 Jeppiaar Institute of Technology

 This is one mechanism for ensuring continuity, should a critical individual leave the project.

 The project manager should monitor work products carefully to ensure that each can stand on its

own and that each imparts information that would be necessary if a newcomer were forced to join

the software team somewhere in the middle of the project.

Risk Management:

 Risk management and contingency planning assumes that mitigation efforts have failed and that

the risk has become a reality.

 Continuing the example, the project is well under way and a number of people announce that they

will be leaving.

 If the mitigation strategy has been followed, backup is available, information is documented, and

knowledge has been dispersed across the team.

 In addition, you can temporarily refocus resources (and readjust the project schedule) to those

functions that are fully staffed, enabling newcomers who must be added to the team to “get up to

speed.”

 Those individuals who are leaving are asked to stop all work and spend their last weeks in

“knowledge transfer mode.”

 This might include video-based knowledge capture, the development of “commentary documents

or Wikis,” and/or meeting with other team members who will remain on the project. THE RMMM

PLAN

 A risk management strategy can be included in the software project plan, or the risk management

steps can be organized into a separate risk mitigation, monitoring, and management plan

(RMMM).

 The RMMM plan documents all work performed as part of risk analysis and is used by the project

manager as part of the overall project plan.

 Each risk is documented individually using a risk information sheet (RIS). In most cases, the

RIS is maintained using a database system so that creation and information entry, priority ordering,

searches, and other analysis may be accomplished easily.

 The format of the RIS is illustrated in Figure 5.12

 Figure 5.12 Risk Information Sheet

CS8484-SOFTWARE ENGINEERING Department of CSE

25

2020-2021 Jeppiaar Institute of Technology

5.11 COMPUTER-AIDED SOFTWARE ENGINEERING(CASE) TOOLS:

 Computer-aided software engineering (CASE) tools assist software engineering managers and

practitioners in every activity associated with the software process

 They automate project management activities, manage all work products produced throughout the

process, and assist engineers in their analysis, design, coding and test work.

 CASE tools can be integrated within a sophisticated environment. CASE provides the software

engineer with the ability to automate manual activities and to improve engineering insight.

 The integration framework is a collection of specialized programs that enables individual CASE

tools to communicate with one another, to create a project database, and to exhibit the same look

and feel to the end-user.

Figure 5.13Case Tools Building Blocks

 Portability services allow CASE tools and their integration framework to migrate across different

hardware platforms and operating systems without significant adaptive maintenance.

1. The building blocks depicted in Figure 5.13 represent a comprehensive foundation for the

integration of CASE tools. However, most CASE tools in use today have not been constructed

using all these building blocks.

2. In fact, some CASE tools remain "point solutions." That is, a tool is used to assist in a particular

software engineering activity (e.g., analysis modeling) but does not directly communicate with

other tools, is not tied into a project database, is not part of an integrated CASE environment (I-

CASE).

3. Although this situation is not ideal, a CASE tool can be used quite effectively, even if it is a point

solution.

A taxonomy of case tools

 CASE tools can be classified by function, by their role as instruments for managers or technical

people, by their use in the various steps of the software engineering process, by the environment

architecture (hardware and software) that supports them, or even by their origin or cost

 The taxonomy presented here uses function as a primary criterion.

CS8484-Software Engineering Department of CSE

2020 - 2021 26 Jeppiaar Institute of Technology

Project planning tools Interface design and development tools

Risk analysis tools Prototyping tools

Project managementtools Programming tools

Requirements tracing tools Web development tools

Metrics and management tools Integration and testing tools

Documentation tools Static analysis tools

System software tools Dynamic analysis tools

Quality assurance tools Test management tools

Database management tools Client/server testing tools

Software configuration management tools Reengineering tools

	5.1.1 People
	5.1.2 Product
	5.1.3 The Process
	5.1.4 The Project:
	5.2 SOFTWARE PROJECT ESTIMATION
	5.2.1 Software Sizing
	 Fuzzy logic sizing.
	For example:
	Change sizing.
	5.2.2 Problem-Based Estimation:
	LOC or FP is then estimated for each function.
	Where,
	LOC based Estimation:
	5.3 AN EXAMPLE OF FP-BASED ESTIMATION
	5.4 THE MAKE/BUY DECISION
	5.4.1 Creating A Decision Tree
	Figure 5.1 A Decision Tree To Support The Make/Buy Decision
	“buy” option.
	Benefits of outsourcing:
	Drawbacks of outsourcing:
	5.5 THE COCOMO I MODEL
	Figure 5.2 Coefficients for three models Merits of basic COCOMO model
	Limitations of basic model
	Example
	i) Effort estimation
	Figure 5.3 Cost driver Attributes
	E=ai(KLOC) * EAF person months
	Figure 5.4 Various Classes of software projects
	Merits of intermediate model
	Limitations of intermediate model
	Example (1)
	3) Detailed COCOMO model
	Figure 5.5 Effort Multipliers for detailed COCOMO Model
	5.6 THE COCOMO II MODEL
	Figure5.6 Productivity rate for developer experience and environment maturity PRODUCTIVITY RATE FOR OBJECT POINTS.
	5.7 SOFTWARE PROJECT SCHEDULING
	Figure 5.7 Project Scheduling Process
	5.7.2 Scheduling:
	5.7.3.1 Time-Line Charts:
	Figure 5.8 Format of Time-Line chart An example time-line chart
	5.8 EARNED VALUE ANALYSIS
	Difference between the BCWS and the BCWP:
	5.9 PROJECT PLAN:
	end if end loop
	PROJECT PLAN STRUCTURE:
	5.10 RISK MANAGEMENT
	Software Risks:
	 Project risks
	 Technical risks
	(Strategic risk),
	(management risk), and
	Reactive strategy:
	Proactive strategy:
	5.10.1 Risk Identification
	 Method for identifying risks:
	Risk Components and Drivers:
	Assessing Overall Project Risk:
	5.10.2 Risk Projection:
	5.10.2.1 Developing A Risk Table:
	Figure 5.10 A Risk table for Risk Projection
	Figure 5.11 Probability Of Occurrence Of Risk Factor Risk and Management Concern
	5.10.2.2 Assessing Risk Impact
	5.10.3 Risk Refinement:
	5.10.4 Risk Mitigation, Monitoring, and Management(RMMM)
	Risk Mitigation:
	Risk Monitoring:
	Risk Management:
	Figure 5.12 Risk Information Sheet
	Figure 5.13Case Tools Building Blocks

