
CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

1 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

             UNIT III  

SOFTWARE DESIGN 

 

Design process – Design Concepts-Design Model– Design Heuristic – Architectural Design –

Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User 

Interface Design: Interface analysis, Interface Design –Component level Design: Designing 

Class based components, traditional Components. 

 

3.1 DESIGN PROCESS 

3.1.1 Software Design and Software Engineering 

 The flow of information during software design is illustrated in Figure 3.1. 

 The data designtransforms the information domain model created during analysis into the data 

structures that will be required to implement the software. 

 The architectural designdefines the relationship between major structural elements 

of the software, the “design patterns” that can be used to achieve the requirements that have been 

defined for the system, 

 The architectural design representation— the framework of a computer-based system—can be 

derived from the system specification, the analysis model, and the interaction of subsystems defined 

within the analysis model. 

 The interface designdescribes how the software communicates within itself, with systems that 

interoperate with it, and with humans who use it. 

The component-level design 

 transforms structural elements of the software architecture into a procedural description of software 

components. 

 Information obtained from the PSPEC, CSPEC, and STD serve as the basis for component design. 

 Design is the only way that we can accurately translate a customer's requirements into a finished 

software product or system. 

Figure 3.1 Translating the analysis model into a software design 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

2 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

3.1.2 The Design Process 

 Software design is an iterative process through which requirements are translated into a “blueprint” 

for constructing the software. 

 That is, the design is represented at a high level of abstraction—a level that can be directly traced to 

the specific system objective and more detailed data, functional, and behavioral requirements. As 

design iterations occur, subsequent refinement leads to design representations at much lower levels 

of abstraction. 

3.1.2.1 Design and Software Quality 

Three characteristics that serve as a guide for the evaluation of a good design: 

• The design must implement all of the explicit requirements contained in the analysis model, and it 

must accommodate all of the implicit requirements desired by the customer. 

• The design must be a readable, understandable guide for those who generate code and for those 

who test and subsequently support the software. 

• The design should provide a complete picture of the software, addressing the data, functional, and 

behavioural domains from an implementation perspective. 

 Each of these characteristics is actually a goal of the design process. In order to evaluate the quality 

of a design representation, we must establish technical criteria for good design. Guidelines: 

1. A design should exhibit an architectural structure that 

(1) has been created using recognizable design patterns, 

(2) is composed of components that exhibit good design characteristics 

(3) can be implemented in an evolutionary fashion, thereby facilitating implementation and testing. 

2. A design should be modular; that is, the software should be logically partitioned into elements 

that perform specific functions and sub functions. 

3. A design should contain distinct representations of data, architecture, interfaces, and components 

(modules). 

4. A design should lead to data structures that are appropriate for the objects to be implemented and 

are drawn from recognizable data patterns. 

5. A design should lead to components that exhibit independent functional characteristics. 

6. A design should lead to interfaces that reduce the complexity of connections between modules 

and with the external environment. 

7. A design should be derived using a repeatable method that is driven by information obtained 

during software requirements analysis. 

Quality Attributes: 

 A set of software quality attributes that has been given the acronym FURPS—functionality, 

usability, reliability, performance, and supportability. 

 The FURPS quality attributes represent a target for all software design: 

Functionality is assessed by evaluating the feature set and capabilities of the program, the generality 

of the functions that are delivered, and the security of the overall system. 

Usability is assessed by considering human factors, overall aesthetics, consistency, and 

documentation. 

Reliability is evaluated by measuring the frequency and severity of failure  



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

3 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

Performance is measured by considering processing speed, response time, resource consumption, 

throughput, and efficiency. 

Supportability combines the ability to extend the program (extensibility), adaptability, 

serviceability—these three attributes represent a more common term, maintainability—and in 

addition, testability, compatibility, configurability (the ability to organize and control elements of 

the software configuration, the ease with which a system can be installed, and the ease with which 

problems can be localized. 

3.1.2.2 The Evolution of Software Design 

The evolution of software design is a continuing process that has spanned the past four 

decades. 

 Modular programs and methods for refining software structures in a top-down manner. 

 Procedural aspects of design definition called structured programming. 

 The translation of data flow or data structure into a design definition. 

 Object-oriented approach to design derivation. 

Like this many design methods, growing. Each software design method introduces unique heuristics 

and notation, Yet, all of these methods have a number of common characteristics: 

(1) A mechanism for the translation of analysis model into a design representation, 

(2) A notation for representing functional components and their interfaces, 

(3) Heuristics for refinement and partitioning, 

(4) Guidelines for quality assessment. 

Regardless of the design method that is used, a software engineer should apply a set of fundamental 

principles and basic concepts to data, architectural, interface, and Component- level design. 

 

3.2 DESIGN CONCEPTS 

Design concepts provides the software designer with a foundation from which more sophisticated 

design methods can be applied and helps the software engineer to answer the following questions: 

• What criteria can be used to partition software into individual components? 

• How is function or data structure detail separated from a conceptual representation of the software? 

• What uniform criteria define the technical quality of a software design? 

Fundamental software design concepts provide the necessary framework for "getting it right." 

 Abstraction 

 Architecture 

 Patterns 

 Separation of Concerns 

 Modularity 

 Information Hiding 

 Functional Independence 

 Refinement 

 Aspects 

 Refactoring 

 Object-Oriented Design Concepts 

 Design Classes 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

4 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

3.2.1 Abstraction 

 Each step in the software process is a refinement in the level of abstraction of the software solution. 

 A procedural abstractionis a named sequence of instructions that has a specific and limited 

function. 

 An example of a procedural abstraction would be the word open for a door. Open implies a long 

sequence of procedural steps (e.g.,walk to the door, reach out and grasp knob, turn knob and pull 

door, step away from moving door, etc.). 

 A data abstractionis a named collection of data that describes a data object 

 An example of data abstraction called door. Like any data object, the data abstraction for door 

would encompass set of attributes that describe the door (e.g., door type, swing direction, opening 

mechanism, weight, dimensions). 

 It follows that the procedural abstraction open would make use of information contained in the 

attributes of the data abstraction door. 

 Control abstraction is the third form of abstraction used in software design. Control abstraction 

implies a program control mechanism without specifying internal details. 

o An example of a control abstraction is the synchronization semaphore] used to 

o coordinate activities in an operating system. 

3.2.2 Software Architecture 

Software architecture means “the overall structure of the software and the ways in which that 

structure provides conceptual integrity for a system”. A set of architectural patterns enable a software 

engineer to reuse design level concepts. 

Properties that should be specified as part of an architectural design: 

a) Structural properties. This aspect of the architectural design representation defines the 

components of a system (e.g., modules, objects, filters) and the manner in which those components 

are packaged and interact with one another. For example, objects are packaged to encapsulate both 

data and the processing that manipulates the data and interact via the invocation of methods. 

b) Extra-functional properties. The architectural design description should address how the design 

architecture achieves requirements for performance, capacity, reliability, security, adaptability, and 

other system characteristics. 

The architectural design can be represented using one or more of a number of different models. 

c) Families of related systems. The architectural design should draw upon repeatable patterns that 

are commonly encountered in the design of families of similar systems. In essence, the design should 

have the ability to reuse architectural building blocks. 

Model Functioning 
Structural models Represent architecture as an organized collection of program components. 

Framework models Increase the level of design abstraction by attempting to identify 
repeatable architectural design frameworks (patterns) that are encountered in 

similar types of applications. 

Dynamic models Address the behavioural aspects of the program architecture, indicating how 

the structure or system configuration may change as a function of external 

events. 
Process models Focus on the design of the business or technical process that the system 

must accommodate. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

5 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

3.2.3 Patterns 

 Brad Appleton defines a design pattern in the following manner: “A pattern is a named nugget of 

insight which conveys the essence of a proven solution to a recurring problem within a certain 

context amidst competing concerns” 

 The intent of each design pattern is to provide a description that enables a designer to determine 

(1) Whether the pattern is applicable to the current work, 

(2) Whether the pattern can be reused (hence, saving design time), and 

(3) Whether the pattern can serve as a guide for developing a similar, but functionally or 

structurally different pattern. 

3.2.4 Separation of Concerns 

 Separation of concerns is a design concept [Dij82] that suggests that any complex problem can be 

more easily handled if it is subdivided into pieces that can each be solved and/or optimized 

independently. 

 A concern is a feature or behaviour that is specified as part of the requirements model for the 

software. By separating concerns into smaller and therefore more manageable pieces, a problem 

takes less effort and time to solve. 

3.2.5 Modularity 

 Software is divided into separately named and addressable components, often called modules 

that are integrated to satisfy problem requirements. 

 It has been stated that "modularity is the single attribute of software that allows a 

program to be intellectually manageable" . 

 Monolithic software (i.e., a large program composed of a single module) cannot be easily grasped 

by a software engineer. 

 The number of control paths, span of reference, number of variables, and overall 

complexity would make understanding close to impossible. 

Figure 3.2 Modularity and software cost 

 The curves shown in Figure 3.2(Modularity and software cost) do provide useful guidance when 

modularity is considered. 

 Another important question arises when modularity is considered. How do we define an appropriate 

module of a given size? The answer lies in the method(s) used to define modules within a system. 

 Five criteria that enable us to evaluate a design method with respect to its ability to define an 

effective modular system: 

a) Modular decomposability. If a design method provides a systematic mechanism for decomposing 

the problem into sub problems, it will reduce the complexity of the overall problem, thereby 

achieving an effective modular solution. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

6 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

b) Modular composability. If a design method enables existing (reusable)design components to be 

assembled into a new system, it will yield a modular solution that does not reinvent the wheel. 

c) Modular understandability. If a module can be understood as a standalone unit (without reference 

to other modules), it will be easier to build and easier to change. 

d) Modular continuity. If small changes to the system requirements result in changes to individual 

modules, rather than system wide changes, the impact of change-induced side effects will be 

minimized. 

e) Modular protection. If an aberrant condition occurs within a module and its effects are constrained 

within that module, the impact of error-induced side effects will be minimized. 

3.2.6 Information Hiding 

 Modules should be specified and designed so that information (procedure and data) contained within 

a module is inaccessible to other modules that have no need for such information. 

 Hiding implies that effective modularity can be achieved by defining a set of independent modules 

that communicate with one another only that information necessary to achieve software function. 

 The benefit of information hiding: most data and procedure are hidden from other parts of the 

software; inadvertent errors introduced during modification are less likely to propagate to other 

locations within the software. 

3.2.7 Functional Independence 

 The concept of functional independence is a direct outgrowth of separation of concerns, modularity, 

and the concepts of abstraction and information hiding. 

 Functional independence is achieved by developing modules with “single-minded” function and an 

“aversion” to excessive interaction with other modules. 

 Independent modules are easier to maintain (and test) because secondary effects caused by design 

or code modification are limited, error propagation is reduced, and reusable modules are possible. 

 Independence is assessed using two qualitative criteria: cohesion and coupling. 

Coupling is an indication of the relative interdependence among modules. Cohesion 

is a natural extension of the information-hiding concept 

3.2.8 Refinement 

 Refinement is actually a process of elaboration. 

 We begin with a statement of function (or description of information) that is defined at a high level 

of abstraction. I.e. the statement describes function or information conceptually but provides no 

information about the internal workings of the function or the internal structure of the information. 

 Refinement causes the designer to elaborate on the original statement, providing more and more 

detail as each successive refinement (elaboration) occurs. 

3.2.9 Aspects 

 An aspect is a representation of a crosscutting concern. 

 It is important to identify aspects so that the design can properly accommodate them as refinement 

and modularization occur. 

 An aspect is implemented as a separate module (component) rather than as software fragments that 

are “scattered” or “tangled” throughout many components. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

7 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 To accomplish this, the design architecture should support a mechanism for defining an aspect—a 

module that enables the concern to be implemented across all other concerns that it crosscuts. 

3.2.10 Refactoring 

 Refactoring is a reorganization technique that simplifies the design (or code) of a component without 

changing its function or behaviour. 

 Fowler defines “Refactoring is the process of changing a software system in such a way that it does 

not alter the external behaviour of the code [design] improves its internal structure.” Benefits of 

refactoring: 

 The redundancy can be achieved. 

 Inefficient algorithms can be eliminated or can be replaced by efficient one. 

 Poorly constructed or inaccurate data structures can be removed or replaced. 

3.2.11 Object-Oriented Design Concepts: 

 The object-oriented (OO) paradigm is widely used in modern software engineering. 

 OO design concepts such as classes and objects, inheritance, messages, and polymorphism. 

3.2.12 Design Classes 

 A set of design classes that refine the analysis classes by providing design detail that will enable the 

classes to be implemented, and implement a software infrastructure that supports the business 

solution. 

 There are five different types of design classes. 

 User interface classes define all abstractions that are necessary for human computer interaction 

(HCI). 

 Business domain classes are often refinements of the analysis classes defined earlier. The classes 

identify the attributes and services (methods) that are required to implement some element of the 

business domain. 

 Process classes implement lower-level business abstractions required to fully manage the business 

domain classes. 

 Persistent classes represent data stores (e.g., a database) that will persist beyond the execution of 

the software. 

 System classes implement software management and control functions that enable the system to 

operate and communicate within its computing environment and with the outside world 

3.3 DESIGN MODEL 

The design model can be viewed in two different dimensions 

 The process dimension indicates the evolution of the design model as design tasks are executed as 

part of the software process. 

 The abstraction dimension represents the level of detail as each element of the analysis model 

System class Persistent 

class 

Process 

class 

Business 

domain 

User 

Interface 

Design classes 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

8 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

Referring to Figure 3.3, the dashed line indicates the boundary between the analysis and design 

models. 

 The elements of the design model use many of the same UML diagrams that were used in the analysis 

model. 

 The difference is that these diagrams are refined and elaborated as part of design; more 

implementation-specific detail is provided, and architectural structure and style, components  that 

reside within the architecture, and interfaces between the components and with the outside world are 

all emphasized. 

Dimensions of the design model 

3.3.1 Data Design Elements 

 Data design referred to as data architecting creates a model of data and/or information that is 

represented at a high level of abstraction (the customer/user’s view of data). 

 This data model is then refined into progressively more implementation-specific representations that 

can be processed by the computer-based system. 

Figure 3.3 Boundary between Analysis and Design Models 

 The structure of data has always been an important part of software design. At the program 

component level, the design of data structures and the associated algorithms required to manipulate 

them is essential to the creation of high-quality applications. 

 At the application level, the translation of a data model into a database is pivotal to achieving the 

business objectives of a system. 

 At the business level, the collection of information stored in disparate databases and reorganized 

into a “data warehouse” enables data mining or knowledge discovery that can have an impact on the 

success of the business itself. 

3.3.2 Architectural Design Elements 

 Architectural design elements give us an overall view of the software. Architectural model can be 

built using following sources- 

 Data flow models or class diagrams 

 Information obtained from application domain 

 Architectural patterns and styles. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

9 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

3.3.3 Interface Design Elements 

The interface design for software is analogous to a set of detailed drawings. 

 The interface design elements for software depict information flows into and out of the system and 

how it is communicated among the components defined as part of the architecture. 

 There are three important elements of interface design. 

3.3.4 Component -Level Design Elements 

 The component-level design for software is the equivalent to a set of detailed drawings (and 

specifications). 

 The component-level design for software fully describes the internal detail of each software 

component. 

 Within the context of object-oriented software engineering, a component is represented in UML 

diagrammatic form as shown in Figure 3.4. 

 In this figure, a component named Sensor Management (part of the Safe Home security function) is 

represented. 

 A dashed arrow connects the component to a class named Sensor that is assigned to it. 

 The Sensor Management component performs all functions associated with Safe Home sensors 

including monitoring and configuring them. 

                                                   Figure 3.4 A UML component diagram 

 

3.3.5 Deployment -Level Design Elements 

 Deployment-level design elements indicate how software functionality and subsystems will be 

allocated within the physical computing environment that will support the software. 

  For example, the elements of the SafeHome product are configured to operate within three primary 

computing environments—a home-based PC, the SafeHome control panel, and a server housed at 

CPI Corp. (providing Internet-based access to the system). 

                                 Figure 3.5 A UML deployment diagram 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

10 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

3.4 DESIGN HEURISTICS 

The program structure can be manipulated according to the following set of heuristics: 

1. Evaluate the "first iteration" of the program structure to reduce coupling and improve 

cohesion. 

i) Once the program structure has been developed, modules may be exploded or imploded with an eye 

toward improving module independence. 

ii) An exploded module becomes two or more modules in the final program structure. 

iii) An imploded module is the result of combining the processing implied by two or more modules. 

iv) An exploded module often results when common processing exists in two or more modules and can 

be redefined as a separate cohesive module. 

v) When high coupling is expected, modules can sometimes be imploded to reduce passage of control, 

reference to global data, and interface complexity. 

2. Attempt to minimize structures with high fan-out; strive for fan-in as depth increases. 

i) The structure shown inside the cloud in below Figure 3.6 does not make effective use of factoring. 

All modules are “pancaked” below a single control module. 

ii) In general, a more reasonable distribution of control is shown in figure 3.7 the upper structure. 

iii) The structure takes an oval shape, indicating a number of layers of control and highly utilitarian 

modules at lower levels. 

3. Keep the scope of effect of a module within the scope of control of that module. 

i) The scope of effect of module e is defined as all other modules that are affected by a decision made 

in module e. 

ii) The scope of control of module e is all modules that are subordinate and ultimately subordinate to 

module e. 

iii) Referring to the below Figure 3.6, if module e makes a decision that affects module r,we have a 

violation of this heuristic, because module r lies outside the scope of control of module e. 

 

Figure 3.6 Program structures 

4. Evaluate module interfaces to reduce complexity and redundancy and improve 

i) Consistency. Module interface complexity is a prime cause of software errors. 

ii) Interfaces should be designed to pass information simply and should be consistent with the function 

of a module. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

11 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

iii) Interface inconsistency is an indication of low cohesion. The module in question should be re- 

evaluated. 

5. Define modules whose function is predictable, but avoid modules that are overly restrictive. 

i) A module is predictable when it can be treated as a black box; that is, the same external data will be 

produced regardless of internal processing details. 

ii) Modules that have internal "memory" can be unpredictable. 

iii) A module that restricts processing to a single sub function exhibits high Cohesion. 

6. Strive for “controlled entry” modules by avoiding "pathological connections." 

i) This design heuristic warns against content coupling. 

ii) Software is easier to understand and therefore easier to maintain when module interfaces are 

constrained and controlled. 

iii) Pathological connection refers to branches or references into the middle of a module. 

 

3.5 ARCHITECTURAL DESIGN 

3.5.1 SOFTWARE ARCHITECTURE 

Good software developers have often adopted one or several architectural patterns as strategies for 

system organization, but they use these patterns informally and have no means to make them explicit 

in the resulting system. 

3.5.1.1 What Is Architecture? 

 The software architecture of a program or computing system is the structure or structures of the 

system, which comprise software components, the externally visible properties of those components, 

and the relationships among them. 

 The architecture is not the operational software. Rather, it is a representation that enables a software 

engineer to 

(1) Analyse the effectiveness of the design in meeting its stated requirements 

(2) Consider architectural alternatives at a stage when making design changes is still relatively easy 

(3) Reducing the risks associated 

 The properties of components are those characteristics that are necessary to an understanding of how 

the components interact with other components. 

 The relationships between components can be as simple as a procedure call from one module to 

another or as complex as a database access protocol. 

 Software architecture considers two levels of the design pyramid 

• Data design and architectural design. 

 Data design enables us to represent the data component of the architecture. 

 Architectural design focuses on the representation of the structure of software components, their 

properties, and interactions. 

3.5.1.2 Why is Architecture Important? 

• Representations of software architecture are an enabler for communication between all parties 

(stakeholders) interested in the development of a computer-based system. 

• The architecture highlights early design decisions that will have a profound impact on all software 

engineering work that follows and, as important, on the ultimate success of the system as an 

operational entity. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

12 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

• Architecture “constitutes a relatively small, intellectually graspable model of how the system is 

structured and how its components work together”. 

 

3.6 ARCHITECTURAL STYLES 

 The architectural model or style is a pattern for creating the system architecture for given problem. 

 The software that is built for computer-based systems also exhibits many architectural styles. 

Each style describes a system category that encompasses 

(1) A set of components(e.g., a database, computational modules) that perform a 

function required by a system; 

(2) A set of connectorsthat enable “communication, coordination and cooperation” 

among components; 

(3) Constraintsthat define how components can be integrated to form the system; 

(4) Semantic modelsthat enable a designer to understand the overall properties of a system by analysing 

the known properties of its constituent parts. In the section that follows, we consider commonly used 

architectural patterns for software. 

3.6.1 A Brief Taxonomy of Styles and Patterns 

a)Data-centered architectures. 

 A data store (e.g., a file or database) resides at the centre of this architecture and is accessed 

frequently by other components that update, add, delete, or otherwise modify data within the store. 

Figure 3.7 (Data-centered architecture) illustrates typical data-centred style. Client software accesses 

a central repository. 

Figure 3.7 Data-centered architecture 

 Data-centred architectures promote integrability. That is, existing components can be changed and 

new client components can be added to the architecture without concern about other clients 

b) Data-flow architectures. 

 This architecture is applied when input data are to be transformed through a series of computational 

or manipulative components into output data. 

 A pipe and filter pattern has a set of components, called filters, connected by pipes that transmit data 

from one component to the next. 

 Each filter works independently of those components upstream and downstream, is designed to 

expect data input of a certain form, and produces data output (to the next filter) of a specified form. 

However, the filter does not require knowledge of the working of its neighbouring filters. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

13 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 If the data flow degenerates into a single line of transforms, it is termed batch sequential. This pattern 

accepts a batch of data and then applies a series of sequential components (filters) to transform it. 

                                                       Figure 3.8 Data-flow architecture 

 

c) Call and return architectures. 

 This architectural style enables a software designer (system architect) to achieve a program structure 

that is relatively easy to modify and scale. A number of sub styles exist within this category: 

Figure 3.9 Main program/subprogram architecture 

• Main program/subprogram architectures. This classic program structure decomposes function 

into a control hierarchy where a “main” program invokes a number of program components, which 

in turn may invoke still other components. 

• Remote procedure call architectures. The components of main program/subprogram 

architecture are distributed across multiple computers on a network. 

d)Object-oriented architectures. 

 The components of a system encapsulate data and the operations that must be applied to manipulate 

the data. 

 Communication and coordination between components is accomplished via message passing. 

e)Layered architectures. 

 The basic structure of a layered architecture is illustrated in Figure 3.10. A number of different layers 

are defined, each accomplishing operations that progressively become 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

14 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

closer to the machine instruction set. 

 At the outer layer, components service user interface operations. 

 At the inner layer, components perform operating system interfacing. 

 Intermediate layers provide utility services and application software functions. 

 Once requirements engineering uncovers the characteristics and constraints of the system to be built, 

the architectural pattern (style) or combination of patterns (styles) that best fits those characteristics 

and constraints can be chosen. 

                                           Figure 3.10 Layered architecture 

3.6.2 Architectural Patterns 

Architectural patterns address an application-specific problem within a specific context and 

under a set of limitations and constraints. The pattern proposes an architectural solution that can 

serve as the basis for architectural design. 

3.6.3 Organization and Refinement 

It is important to establish a set of design criteria that can be used to assess an architectural 

design that is derived. The following questions provide insight into the architectural style that has 

been derived. 

a) Control 

 How is control managed within the architecture? 

 Does a distinct control hierarchy exist, and if so, what is the role of components within this control 

hierarchy? 

 How do components transfer control within the system? 

 How is control shared among components? 

 What is the control topology? 

 Is control synchronized or do components operate asynchronously? 

b) Data 

 How are data communicated between components? 

 Is the flow of data continuous, or are data objects passed to the system sporadically? 

 What is the mode of data transfer? 

 Do data components (e.g., a blackboard or repository) exist, and if so, what is their role?      How do 

functional components interact with data components? 

 Are data components passive or active ? 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

15 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 How do data and control interact within the system? 

 These questions provide the designer with an early assessment of design quality and lay the 

foundation for more-detailed analysis of the architecture. 

 

3.7 ARCHITECTURAL DESIGN 

 As architectural design begins, the software to be developed must be put into context—that is, the 

design should define the external entities (other systems, devices, and people) that the software 

interacts with and the nature of the interaction. 

 Once context is modelled and all external software interfaces have been described, you can identify 

a set of architectural archetypes. 

 An archetype is an abstraction (similar to a class) that represents one element of system behaviour. 

3.7.1 Representing the System in Context 

 Architectural context represents how the software interacts with entities external to its boundaries.  

 At the architectural design level, a software architect uses an architectural context diagram (ACD) 

to model the manner in which software interacts with entities external to its boundaries. 

 The generic structure of the architectural context diagram is illustrated in Figure 3.11 

 Referring to the figure 3.11, systems that interoperate with the target system (the system for which 

an architectural design is to be developed) are represented as 

 Superordinate systems—those systems that use the target system as part of some higher- level 

processing scheme. 

 Subordinate systems—those systems that are used by the target system and provide data or 

processing that are necessary to complete target system functionality. 

 

Figure 3.11 Architectural context diagram 

 Peer-level systems—those systems that interact on a peer-to-peer basis (i.e., information is either 

produced or consumed by the peers and the target system. 

 Actors—entities (people, devices) that interact with the target system by producing or consuming 

information that is necessary for requisite processing. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

16 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 To illustrate the use of the ACD, consider the home security function of the SafeHomeproduct. The 

overall SafeHomeproduct controller and the Internet-based system are both superordinate to the 

security function and are shown above the function in Figure 3.12. 

Figure 3.12 Architectural context diagram for the SafeHome security function 

3.7.2 Defining Archetypes 

 An archetype is a class or pattern that represents a core abstraction that is critical to the design of 

architecture for the target system. 

 The target system architecture is composed of these archetypes, which represent stable elements of 

the architecture but may be instantiated many different ways based on the behaviour of the system. 

 The SafeHome home security function, defines the following archetypes: 

 Node.Represents a cohesive collection of input and output elements of the home security function. 

For example a node might be comprised of (1) various sensors and (2) a variety of alarm (output) 

indicators. 

 Detector.An abstraction that encompasses all sensing equipment that feeds information into the 

target system. 

 Indicator. An abstraction that represents all mechanisms (e.g., alarm siren, flashing lights, bell) for 

indicating that an alarm condition is occurring. 

 Controller. An abstraction that depicts the mechanism that allows the arming or disarming of a 

node. If controllers reside on a network, they have the ability to communicate with one another. 

 

           Figure 3.13 UML relationships for SafeHome security function archetypes 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

17 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

3.7.3 Refining the Architecture into Components 

 As the software architecture is refined into components, the structure of the system begins to emerge. 

 These analysis classes represent entities within the application (business) domain that must be 

addressed within the software architecture. Hence, the application domain is one source for the 

derivation and refinement of components. Another source is the infrastructure domain. 

The components can be the entities that follow following functionalities. 

 External communication management—coordinates communication of the security function with 

external entities such as other Internet-based systems and external alarm notification. 

 Control panel processing—manages all control panel functionality. 

 Detector management—coordinates access to all detectors attached to the system. 

 Alarm processing—verifies and acts on all alarm conditions. 

3.7.4 Describing Instantiations of the System 

 The architectural design that has been modelled to this point is still relatively high level. 

 The context of the system has been represented, archetypes that indicate the important abstractions 

within the problem domain have been defined, the overall structure of the system is apparent, and 

the major software components have been identified. 

 

3.8 ARCHITECTURAL MAPPING USING DATA FLOW 

 To illustrate one approach to architectural mapping, we consider the call and return Architecture—

an extremely common structure for many types of systems. 

 The mapping technique to be presented enables a designer to derive reasonably complex call and 

return architectures from data flow diagrams within the requirements model. 

 The technique, sometimes called structured design,, top-down design , and structured programming. 

 Structured design is often characterized as a data flow-oriented design method because it provides a 

convenient transition from a data flow diagram to software architecture. 

 The transition from information flow (represented as a DFD) to program structure is accomplished 

as part of a six-step process: 

(1) The type of information flow is established; 

(2) Flow boundaries are indicated; 

(3) The DFD is mapped into program structure; 

(4) Control hierarchy is defined; 

(5) Resultant structure is refined using design measures and heuristics; 

(6) The architectural description is refined and elaborated. 

3.8.1 Transform Mapping 

 Transform mapping is a set of design steps that allows a DFD with transform flow characteristics to 

be mapped into a specific architectural style.Consider the SafeHome security function. 

 One element of the analysis model is a set of data flow diagrams that describe information flow 

within the security function. 

 To map these data flow diagrams into a software architecture, the following design steps are: 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

18 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

Step 1. Review the fundamental system model. 

 The fundamental system model or context diagram depicts the security function as a single 

transformation, representing the external producers and consumers of data that flow into and out of 

the function. 

 

Figure 3.14 Context level 0 DFD for Safe Home 

Step 2. Review and refine data flow diagrams for the software. 

 Information obtained from analysis models contained in the Software Requirements Specifications 

refined to produce greater detail. 

 For example, the level 2 DFD for monitor sensors is examined, and a level 3 data flow diagram is 

derived as, the process implied by a transform performs a single, distinct function that can be 

implemented as a module in the SafeHomesoftware. 

 

Figure3.15 Level 1 DFD for the SafeHome security function 

 Therefore, the level 3 DFD contains sufficient detail for a "first cut" at the design of architecture for 

the monitor sensors subsystem, and we proceed without further refinement. 

Step 3. Determine whether the DFD has transform or transaction flow characteristics. 

 Evaluating the Level 3 DFD data entering the software along one incoming path and exiting along 

three outgoing paths. 

 Therefore, an overall transform characteristic will be assumed for information flow. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

19 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 

 

Figure 3.16 Level 2 DFD that refines the monitor sensors transform 

Step 4. Isolate the transform centre by specifying incoming and outgoing flow boundaries 

 Incoming flow as a path in which information is converted from external to internal form; outgoing 

flow converts from internal to external form. 

 

Figure 3.17 Level 3 DFD for monitor sensors with flow boundaries 

 Incoming and outgoing flow boundaries are open to interpretation. That is, different designers may 

select slightly different points in the flow as boundary locations. In fact, alternative design solutions 

can be derived by varying the placement of flow boundaries. 

 Flow boundaries for the example are illustrated as shaded curves running vertically through the flow 

in Figure. The transforms (bubbles) that constitute the transform centre lie within the two shaded 

boundaries that run from top to bottom in the figure. 

Step 5. Perform "first-level factoring." 

 When transform flow is encountered, a DFD is mapped to a specific structure (a call and return 

architecture) that provides control for incoming, transform, and outgoing information processing. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

20 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 An incoming information processing controller, called sensor input controller, coordinates receipt 

of all incoming data. 

 

 

Figure 3.18 Level 3 DFD for monitor sensors with flow boundaries 

 A transform flow controller, called alarm conditions controller, supervises all operations on data in 

internalized form (e.g., a module that invokes various data transformation procedures). 

 An outgoing information processing controller, called alarm output controller, coordinates 

production of output information. 

Figure 3.19 First-level factoring for monitor sensors 

Step 6. Perform "second-level factoring." 

 Second-level factoring is accomplished by mapping individual transforms (bubbles) of a DFD into 

appropriate modules within the architecture. Second-level factoring for monitor sensors 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

21 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 Although Figure 3.20 illustrates a one-to-one mapping between DFD transforms and software 

modules, different mappings frequently occur. 

  Two or even three bubbles can be combined and represented as one module (recalling potential 

problems with cohesion) or a single bubble may be expanded to two or more modules. 

 Second-level factoring for incoming flow follows in the same manner. Factoring is again 

accomplished by moving outward from the transform centre boundary on the incoming flow side. 

Figure 3.20 Second-layer Factoring 

 The transform centre of monitor sensors subsystem software is mapped somewhat differently. Each 

of the data conversion or calculation transforms of the transform portion of the DFD is mapped into 

a module subordinate to the transform controller. A completed first-iteration architecture is shown 

in Figure 3.21 

 

 

Figure 3.21 First-iteration program structure for monitor sensors 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

22 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

Step 7. Refine the first-iteration architecture using design heuristics for improved software 

quality.Many modifications can be made to the first iteration architecture developed for the Safe 

Home monitor sensors subsystem. Among many possibilities, 

1. The incoming controller can be removed because it is unnecessary when a single incoming flow 

path is to be managed. 

2. The substructure generated from the transform flow can be imploded into the module establish 

alarm conditions (which will now include the processing implied by select phone number). The 

transform controller will not be needed and the small decrease in cohesion is tolerable. 

3. The modules format display and generate display can be imploded (we assume that display 

formatting is quite simple) into a new module called produce display. 

 The refined software structure for the monitor sensors subsystem is shown in Figure 3.22. 

 The objective of the preceding seven steps is to develop an architectural representation of software. 

 

Figure 3.22 Refined program structure for monitor sensors 

3.8.2 Transaction Mapping (Architectural Mapping) 

 In many software applications, a single data item triggers one or a number of information 

 flows that effect a function implied by the triggering data item. 

 The data item, called a transaction. 

An Example 

 Transaction mapping will be illustrated by considering the user interaction subsystem of the 

SafeHomesoftware. Level 1 data flow for this subsystem is shown as part of Fig 3.15 

 Refining the flow, a level 2 data flow diagram (a corresponding data dictionary, CSPEC, and 

PSPECs would also be created) is developed and shown in Figure 3.23 

 As shown in the figure, user commands flows into the system and results in additional information 

flow along one of three action paths. 

 A single data item, command type, causes the data flow to fan outward from a hub. 

 It should be noted that information flow along two of the three action paths accommodateadditional 

incoming flow (e.g., system parameters and data are input on the “configure" action path). Each 

action path flows into a single transform, display messages and status. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

23 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

Design Steps 

 The design steps for transaction mapping are similar and in some cases identical to steps for 

transform mapping (Section 14.6). 

 A major difference lies in the mapping of DFD to software structure. 

Step 1. Review the fundamental system model. 

Step 2. Review and refine data flow diagrams for the software. 

Step 3. Determine whether the DFD   has transform or transaction flow 

characteristics. 

 

 

 

 

 

Figure 3.23Level 2 DFD for user interaction subsystem with flow boundaries 

 Steps 1, 2, and 3 are identical to corresponding steps in transform mapping. 

 The DFD shown in Figure 3.23 has a classic transaction flow characteristic. 

 However, flow along two of the action paths emanating from the invoke command processing bubble 

appears to have transform flow characteristics. Therefore, flow boundaries must be established for 

both flow types. 

Step 4. Identify the transaction centre and the flow characteristics along 

each of the action paths. 

 The location of the transaction centre can be immediately discerned from the DFD. 

 The transaction centre lies at the origin of a number of actions paths that flow radially from it. For 

the flow shown in Figure3.23, the invoke command processing bubble is the transaction centre. 

 The incoming path (i.e., the flow path along which a transaction is received) and all action paths 

must also be isolated. 

 Boundaries that define reception path and action paths are also shown in the figure 3.25. Each action 

path must be evaluated for its individual flow characteristic. For example, the "password" 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

24 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

path has transform characteristics. Incoming, transform, and outgoing flow are indicated with 

boundaries. 

Step 5. Map the DFD in a program structure amenable to transaction processing. 

 Transaction flow is mapped into an architecture that contains an incoming branch and a dispatch 

branch. 

 The structure of the incoming branch is developed in much the same way as transform mapping. 

 Starting at the transaction centre, bubbles along the incoming path are mapped into modules. The 

structure of the dispatch branch contains a dispatcher module that controls all subordinate action 

modules. 

 Each action flow path of the DFD is mapped to a structure that corresponds to its specific flow 

characteristics. This process is illustrated schematically in Figure 3.23 

 Considering the user interaction subsystem data flow, first-level factoring for step 5 is shown in 

Figure 3.25. 

 The bubbles read user command and activate/deactivate system map directly into the architecture 

without the need for intermediate control modules. 

 

Figure 3.24Transaction mapping 

 The transaction centre, invoke command processing, maps directly into dispatcher module of the 

same name. Controllers for system configuration and password processing are created as illustrated 

in Figure 3.23 

 

 

Figure 3.25First-level factoring for user interaction subsystem 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

25 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

Step 6. Factor and refine the transaction structure and the structure of each action path. 

Each action path of the data flow diagram has its own information flow characteristics. 

 We have already noted that transform or transaction flow may been countered. The action path- 

related "substructure" is developed using the design steps discussed in this and the preceding section. 

 As an example, consider the password processing information flow shown (inside shaded area) in 

Figure3.23. 

 The flow exhibits classic transform characteristics. A password is input (incoming flow) and 

transmitted to a transform center where it is compared against stored passwords. 

 An alarm and warning message (outgoing flow)are produced (if a match is not obtained). The 

"configure" path is drawn similarly using the transform mapping. The resultant software architecture 

is shown in Figure 3.25 

Step 7. Refine the first-iteration architecture using design heuristics forimproved software 

quality. This step for transaction mapping is identical to thecorresponding step for transform 

mapping. In both design approaches, criteria suchas module independence, practicality (efficacy of 

implementation and test), and maintainabilitymust be carefully considered as structural 

modifications are proposed. 

 

Figure 3.26 First-iteration architecture for user interaction subsystem 

 

3.9 USER INTERFACE DESIGN 

3.9.1 The Golden Rules 

Mandel coins three golden rules: 

1. Place the user in control. 

2. Reduce the user’s memory load. 

3. Make the interface consistent. 

These golden rules actually form the basis for a set of user interface design principles that guide this 

important aspect of software design. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

26 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

1. Place the user in control. 

Mandel defines a number of design principles that allow the user to maintain control: 

 Define interaction modes in a way that does not force a user into unnecessary or undesired actions. 

 Provide for flexible interaction. 

 Allow user interaction to be interruptible and undoable. 

 Streamline interaction as skill levels advance and allow the interaction to be customized. 

 Hide technical internals from the casual user. 

 Design for direct interaction with objects that appear on the screen. 

2. Reduce the user’s memory load. 

Mandel defines design principles that enable an interface to reduce the user’s memory load: 

 Reduce demand on short-term memory. 

 Establish meaningful defaults. 

 Define shortcuts that are intuitive. 

 The visual layout of the interface should be based on a real-world metaphor. 

 Disclose information in a progressive fashion. 

3. Make the interface consistent. 

The interface should present and acquire information in a consistent fashion. This implies that 

(1) all visual information is organized according to design rules that are maintained throughout 

all screen displays, 

(2) input mechanisms are constrained to a limited set that is used consistently throughout the 

application 

(3) mechanisms for navigating from task to task are consistently defined and implemented. 

Mandel defines a set of design principles that help make the interface consistent: 

 Allow the user to put the current task into a meaningful context. 

 Maintain consistency across a family of applications. 

 If past interactive models have created user expectations, do not make changes unless there is 

a compelling reason to do so. 

 

3.10 USER INTERFACE ANALYSIS AND DESIGN 

 The overall process for analyzing and designing a user interface begins with the creation of different 

models of system function. 

 Tools are used to prototype and ultimately implement the design model, and the result is evaluated 

by end users for quality. 

3.10.1 Interface Analysis and Design Models 

 

Interface analysis and design models 

Implementation 

model 

Mental 

model 

Design 

model 
User model 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

27 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

User model: 

To build an effective user interface, “all design should begin with an understanding of the intended 

users, including profiles of their age, gender, physical abilities, education, cultural or ethnic 

background, motivation, goals and personality” 

In addition, users can be categorized as: 

Novices. No syntactic knowledge1 of the system and little semantic knowledge2 of the application 

or computer usage in general. 

Knowledgeable, intermittent users. Reasonable semantic knowledge of the application but 

relatively low recall of syntactic information necessary to use the interface. 

Knowledgeable, frequent users. Good semantic and syntactic knowledge that often leads to the 

“power-user syndrome”; that is, individuals who look for shortcuts and abbreviated modes of 

interaction. 

Design model: 

 It consists of data, architectural, interface and procedural representation of the software. 

Mental model 

 The user’s mental model (system perception) is the image of the system that end users carry in their 

heads. 

Implementation model: 

 The implementation model combines the outward manifestation of the computer based system, 

coupled with all supporting information that describes interface syntax and semantics. When the 

implementation model and the user’s mental model are coincident, users generally feel comfortable 

with the software and use it effectively. 

3.10.2 The Process 

 The analysis and design process for user interfaces is iterative and can be represented using a spiral 

model. 

 The user interface analysis and design process begins at the interior of the spiral and encompasses 

four distinct framework activities 

(1) Interface analysis and modeling, 

(2) Interface design, 

(3) Interface construction, and 

(4) Interface validation. 

Figure 3.27The user interface design process 

 Interface analysis focuses on the profile of the users who will interact with the system. Skill level, 

business understanding, and general receptiveness to the new system are recorded; and different user 

categories are defined. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

28 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 The goal of interface design is to define a set of interface objects and actions (and their screen 

representations) that enable a user to perform all defined tasks in a manner that meets every usability 

goal defined for the system. 

 Interface construction normally begins with the creation of a prototype that enables usage scenarios 

to be evaluated. 

 Interface validation focuses on 

(1) the ability of the interface to implement every user task correctly, to accommodate all task 

variations, and to achieve all general user requirements; 

(2) the degree to which the interface is easy to use and easy to learn, and 

(3) the users’ acceptance of the interface as a useful tool in their work. 

 

3.11 INTERFACE ANALYSIS 

 Before preceding for interface design it is necessary to understand the problem. 

 Understanding the problem means understanding- 

1. The people or user who actually interacts with the system. 

2. The task that are performed by the end user for interacting the system. 

3. The contents of the interface that will be displayed to the user. 

4. The environment in which the task will be conducted. 

3.11.1 User Analysis 

 “User interface” is probably all the justification needed to spend some time understanding the user. 

 Following are the ways by which one can learn what the user wants from the user interface. 

 User Interviews. The most direct approach, members of the software team meet with end users to 

better understand their needs, motivations, work culture, and other issues. This can be accomplished 

in one-on-one meetings or through focus groups. 

 Sales input. Sales people meet with users on a regular basis and can gather information that will 

help the software team to categorize users and better understand their requirements. 

 Marketing input. Market analysis can be invaluable in the definition of market segments and an 

understanding of how each segment might use the software in subtly different ways. 

 Support input. Support staff talks with users on a daily basis. They are the most likely source of 

information on what works and what doesn’t, what users like and what they dislike, what features 

generate questions and what features are easy to use. 

The following set of questions that will help you to better understand the users of a system: 

• Are users trained professionals, technicians, clerical, or manufacturing workers? 

• What level of formal education does the average user have? 

• How are users compensated for the work they perform? 

• Do users work normal office hours or do they work until the job is done? 

• Is the software to be an integral part of the work users do or will it be used only occasionally? 

• What is the primary spoken language among users? 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

29 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

• What are the consequences if a user makes a mistake using the system? 

• Are users experts in the subject matter that is addressed by the system? 

• Do users want to know about the technology that sits behind the interface? 

3.11.2 Task Analysis and Modelling: 

The goal of task analysis is to answer the following questions: 

• What work will the user perform in specific circumstances? 

• What tasks and subtasks will be performed as the user does the work? 

• What specific problem domain objects will the user manipulate as work is performed? 

• What is the sequence of work tasks—the workflow? 

• What is the hierarchy of tasks? 

In order to answer these questions following techniques are used- 

Use cases. 

 The use case describes the manner in which an actor interacts with a system. 

 The use case is developed to show how an end user performs some specific work-related task. 

 The use case is written in an informal style (a simple paragraph) 

Task elaboration. 

 Task elaboration also called functional decomposition or stepwise refinement as a mechanism for 

refining the processing tasks that are required for software to accomplish some desired function. 

 Task analysis for interface design uses an elaborative approach to assist in understanding the human 

activities the user interface must accommodate. 

Object elaboration. 

 Rather than focusing on the tasks that a user must perform, examine the use case and other 

information obtained from the user and extract the physical objects that are used by the interior 

designer. 

 These objects can be categorized into classes. 

 Attributes of each class are defined, and an evaluation of the actions applied to each object provide 

a list of operations 

Workflow analysis. 

 When a number of different users, each playing different roles, makes use of a user interface, it is 

sometimes necessary to go beyond task analysis and object elaboration and apply workflow analysis. 

 This technique allows you to understand how a work process is completed when several people (and 

roles) are involved. 

 Workflow can be represented effectively with a UML swimlane diagram (a variation on the activity 

diagram). 

 Consider only a small part of the work process: the situation that occurs when a patient asks for a 

refill. Figure 3.28 presents a swimlane diagram that indicates the tasks and decisions for each of the 

three roles noted earlier. 

 This information may have been elicited via interview or from use cases written by each actor. 

Regardless, the flow of events (shown in the figure) enables you to recognize a number of key 

interface characteristics: 

1. Each user implements different tasks via the interface; therefore, the look and feel of the interface 

designed for the patient will be different than the one defined for pharmacists or physicians. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

30 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

2. The interface design for pharmacists and physicians must accommodate access to and display of 

information from secondary information sources (e.g., access to inventory for the pharmacist and 

access to information about alternative medications for the physician). 

3. Many of the activities noted in the swimlane diagram can be further elaborated using task analysis 

and/or object elaboration (e.g., Fills prescription could imply a mail-order delivery, a visit to a 

pharmacy, or a visit to a special drug distribution center). 

Hierarchical representation. 

 A process of elaboration occurs as you begin to analyze the interface. Once workflow has been 

established, a task hierarchy can be defined for each user type. 

User task: Requests that a prescription be refilled 

• Provide identifying information. 

• Specify name. 

• Specify user id. 

• Specify PIN and password. 

• Specify prescription number. 

• Specify date refill is required. 

 

                   Figure 3.28 Swimlane diagram for prescription refill function 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

31 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

3.11.3 Analysis of Display Content 

 The user tasks identified lead to the presentation of a variety of different types of content. 

 For modern applications, display content can range from character-based reports (e.g., a 

spreadsheet), graphical displays (e.g., a histogram, a 3-D model, a picture of a person), or specialized 

information (e.g., audio or video files). 

 During this interface analysis step, the format and aesthetics of the content (as it is displayed by the 

interface) are considered. 

 Among the questions that are asked and answered are: 

 Are different types of data assigned to consistent geographic locations on the screen (e.g., photos 

always appear in the upper right-hand corner)? 

 Can the user customize the screen location for content? 

 Is proper on-screen identification assigned to all content? 

 If a large report is to be presented, how should it be partitioned for ease of understanding? 

 Will mechanisms be available for moving directly to summary information for large collections of 

data? 

 Will graphical output be scaled to fit within the bounds of the display device that is used? 

 How will color be used to enhance understanding? 

 How will error messages and warnings be presented to the user? 

 The answers to these (and other) questions will help you to establish requirements for content 

presentation. 

3.11.4 Analysis of the Work Environment 

 The analysis of work environment is very important 

 In some applications the user interface for a computer-based system is placed in a “user- friendly 

location” (e.g., proper lighting, good display height, easy keyboard access), but in others (e.g., a 

factory floor or an airplane cockpit), lighting may be suboptimal, noise may be a factor, a keyboard 

or mouse may not be an option, display placement may be less than ideal. The interface designer 

may be constrained by factors that mitigate against ease of use. 

 In addition to physical environmental factors, the workplace culture also comes into play. Will 

system interaction be measured in some manner (e.g., time per transaction or accuracy of a 

transaction)? Will two or more people have to share information before an input can be provided? 

How will support be provided to users of the system? These and many related questions should be 

answered before the interface design commences. 

3.12 INTERFACE DESIGN STEPS 

 Interface design, like all software engineering design, is an iterative process. Each user interface 

design step occurs a number of times, elaborating and refining information developed in the 

preceding step. 

 Following are the commonly used interface design steps- 

1. Using information developed during interface analysis define interface objects and actions 

(operations). 

2. Define events (user actions) that will cause the state of the user interface to change. Model this 

behavior. 

3. Depict each interface state as it will actually look to the end user. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

32 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

4. Indicate how the user interprets the state of the system from information provided through the 

interface. 

While designing the interface the designer has to follow- 

 Golden rules 

 Model the interface 

 Analyze the working environment 

3.12.1 Applying Interface Design Steps 

 The first step in any interface design is to identify all the necessary objects and corresponding 

actions. 

 There are three types of objects 

 Target, 

 source, and 

 application objects 

 A source object (e.g., a report icon) is dragged and dropped onto a target object (e.g., a printer icon). 

 An application object represents application-specific data that are not directly manipulated as part 

of screen interaction. For example, a mailing list is used to store names for a mailing. 

3.12.2 User Interface Design Patterns 

 Graphical user interfaces have become so common that a wide variety of user interface design 

patterns has emerged. 

 A design pattern is an abstraction that prescribes a design solution to a specific, well-bounded design 

problem. 

3.12.3 Design Issues 

 As the design of a user interface evolves, four common design issues almost always surface: 

 system response time, 

 user help facilities, 

 error information handling, and 

 Command labeling. 

Response time: 

 system response time is measured from the point at which the user performs some control action. 

 

 

System response time 

Characteristics 

 

System length 

The amount of time taken by the 

system to respond 

 

Variability 

Variation of time from 

average response time 

Help facilities 

 This is the most essential criteria for any user interface this makes the system more interactive. 

 The help can be online help or it can be in the form of user manual. 

Error handling 

 Errors and warning cause the frustrations to the user. 

Menu and command labelling 

 The typed command was once the most common mode of interaction between user and system 

software and was commonly used for applications of every type. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

33 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 There are number of design issues for typed command and menu labels. 

Command related design issues Menu label related design issues 
What form will commands take? Will every menu option have a 

corresponding command? 

How difficult will it be to learn and remember 

the commands? 

Are menu labels self-explanatory within the 

context of the interface? 
Can commands be customized or 

abbreviated by the user? 

Are submenus consistent with the function 

implied by a master menu item? 

What can be done if a command is 

forgotten? 

 

Application accessibility 

 Accessibility for users and software engineers may be physically challenged is an imperative for 

ethical, legal, and business reasons. 

 A variety of accessibility guidelines designed for Web applications but often applicable to all types 

of software—provides detailed suggestions for designing interfaces that achieve varying levels of 

accessibility. 

Internationalization 

 Software engineers and their managers invariably underestimate the effort and skills required to 

create user interfaces that accommodate the needs of different locales and languages. 

 A variety of internationalization guidelines are available to software engineers. These guidelines 

address broad design issues (e.g., screen layouts may differ in various markets) and discrete 

implementation issues (e.g., different alphabets may create specialized labeling and spacing 

requirements). 

  The Unicode standard has been developed to address the daunting challenge of managing dozens 

of natural languages with hundreds of characters and symbols. 

 

 

3.13 COMPONENT LEVEL DESIGN: 

 A component is a modular building block for computer software. 

 The OMG Unified Modeling Language Specification defines a component as “a modular, 

deployable, and replaceable part of a system that encapsulates implementation and exposes a set of 

interfaces.” 

3.14 DESIGNING CLASS-BASED COMPONENTS 

 Component is represented as part of the architectural model. 

 When an object-oriented software engineering approach is chosen, component-level design focuses 

on the elaboration of problem domain specific classes and the definition and refinement of 

infrastructure classes contained in the requirements model. 

 The detailed description of the attributes, operations, and interfaces used by these classes. 

3.14.1 Basic Design Principles 

There are four design principles that are used during the component level design. 

These principles are- 

The Open-Closed Principle (OCP) 

 “A module [component] should be open for extension but closed for modification” 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

34 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 A designer should design a component in such a manner that some functionalities can added to it if 

required but in doing so there should not be any change in the internal design of the component  

itself. 

The Liskov Substitution Principle (LSP) 

 “Subclasses should be substitutable for their base classes” 

 A component that uses a base class should continue to function properly if a class derived from the 

base class is passed to the component instead. 

Dependency Inversion Principle (DIP) 

 “Depend on abstractions. Do not depend on concretions” 

 The more a component depends on other concrete components rather than on abstractions such as 

an interface, the more difficult it will be to extend. 

The Interface Segregation Principle (ISP) 

 “Many client-specific interfaces are better than one general purpose interface” 

 There are many instances in which multiple client components use the operations provided by a 

server class. 

The Release Reuse Equivalency Principle (REP) 

 “The granule of reuse is the granule of release”. 

 When classes or components are designed for reuse, there is an implicit contract that is established 

between the developer of the reusable entity and the people who will use it. 

 The developer commits to establish a release control system that supports and maintains older 

versions of the entity while the users slowly upgrade to the most current version. 

The Common Closure Principle (CCP) 

 “Classes that change together belong together.” 

  Classes should be packaged cohesively. That is, when classes are packaged as part of a design, they 

should address the same functional or behavioral area. 

 When some characteristic of that area must change, it is likely that only those classes within the 

package will require modification. This leads to more effective change control and release 

management. 

f)The Common Reuse Principle (CRP). 

 “Classes that aren’t reused together should not be grouped together”. 

 When one or more classes within a package changes, the release number of the package changes. 

  All other classes or packages that rely on the package that has been changed must now update to 

the most recent release of the package and be tested to ensure that the new release operates without 

incident. 

3.14.2 Component-Level Design Guidelines 

 Ambler suggests the following guidelines for conducting component level design 

 Components: Naming conventions should be established for components that are specified as part 

of the architectural model and then refined and elaborated as part of the component-level model. 

 Interfaces:Interfaces provide important information about communication and collaboration (as 

well as helping us to achieve the OCP). 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

35 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 Dependencies and Inheritance:For improved readability, it is a good idea to model dependencies 

from left to right and inheritance from bottom (derived classes) to top (base classes). In addition, 

component interdependencies should be represented via interfaces. 

3.14.3 Cohesion: 

 Component-level design for object-oriented systems, cohesion implies that a component or class 

encapsulates only attributes and operations that are closely related to one another and to the class or 

component itself. 

 

Figure 3.29 Layer cohesion 

Various types of cohesion are: 

Functional. 

 This level of cohesion occurs when a component performs a targeted computation and then returns 

a result. 

Layer. 

 Exhibited by packages, components, and classes, this type of cohesion occurs when a higher layer 

accesses the services of a lower layer, but lower layers do not access higher layers. 

Communicational. 

 All operations that access the same data are defined within one class. 

3.14.4 Coupling 

 Coupling is a qualitative measure of the degree to which classes are connected to one another. 

 Various types of coupling are 

 Content coupling. Occurs when one component “surreptitiously modifies data that is internal to 

another component” 

 Common coupling.Occurs when a number of components all make use of a global variable. 

 Control coupling. Occurs when operation A() invokes operation B() and passes a control flag to B. 

The control flag then “directs” logical flow within B. 

 Stamp coupling.Occurs when ClassB is declared as a type for an argument of an operation of Class 

A. Because ClassB is now a part of the definition of ClassA, modifying the system becomes more 

complex. 

 Data coupling.Occurs when operations pass long strings of data arguments. 

 Routine call coupling.Occurs when one operation invokes another. 

 Type use coupling. Occurs when component A uses a data type defined in component B.If the type 

definition changes, every component that uses the definition must also change. 

 Inclusion or import coupling.Occurs when component A imports or includes a package or the 

content of component B. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

36 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 External coupling. Occurs when a component communicates or collaborates with 

infrastructure components 

 

3.15 TRADITIONAL COMPONENTS 

 Component level design is also called as procedural design. 

 The goal of component level design is to translate design model into operational software. 

 Graphical, tabular or text based notations are used to create a set of structured programming 

constructs. 

 The constructs are sequence, condition, and repetition. 

 Sequence implements processing steps that are essential in the specification of any algorithm. 

 Condition provides the facility for selected processing based on some logical occurrence. 

 Repetition allows for looping. 

3.15.1 Graphical Design Notation: 

 The structured programming constructs can be represented by graphical notations. These graphical 

notations are called flow chart. 

 A box is used to indicate a processing step. 

  A diamond represents a logical condition, and arrows show the flow of control. Figure illustrates 

three structured constructs. 

 

 

                                                                 Figure 3.30 Flowchart constructs 

 The sequence is represented as two processing boxes connected by a line (arrow) of control. 

 Condition, also called if-then-else, is depicted as a decision diamond that, if true, causes then- part 

processing to occur, and if false, invokes else-part processing. 

 Repetition is represented using two slightly different forms. 

3.15.2 Tabular Design Notation 

 Decision tables provide a notation that translates actions and conditions described in a processing 

narrative or a use case into a tabular form. 

 The table 4.1 is divided into four sections. 

 The upper left-hand quadrant contains a list of all conditions. 

 The lower left-hand quadrant contains a list of all actions that are possible based on combinations 

of conditions. 



CS8484-SOFTWARE ENGINEERING                                                                                                     Department of CSE 

 

37 

2020-2021                                                                                                               Jeppiaar Institute of Technology 
 

 

 The right-hand quadrants form a matrix that indicates condition combinations and the corresponding 

actions that will occur for a specific combination. 

 Therefore, each column of the matrix may be interpreted as a processing rule. 

 The following steps are applied to develop a decision table: 

1. List all actions that can be associated with a specific procedure (or component). 

2. List all conditions (or decisions made) during execution of the procedure. 

3. Associate specific sets of conditions with specific actions, eliminating impossible combinations 

of conditions; alternatively, develop every possible permutation of conditions. 

4. Define rules by indicating what actions occur for a set of conditions. 

Table 3.1 Decision table nomenclature 

3.15.3 Program Design Language 

 Program design language (PDL), also called structured English or pseudocode, incorporates the 

logical structure of a programming language with the free-form expressive ability of a natural 

language. 

 A basic PDL syntax should include constructs for component definition, interface description, data 

declaration, block structuring, condition constructs, repetition constructs, and input-output (I/O) 

constructs. 

 The following PDL provides an elaboration of the procedural design for an early version of an alarm 

management component. 



CS8484-Software Engineering  Department of CSE 

2020 - 2021 38 Jeppiaar Institute of Technology 

 

 
 

 


	The component-level design
	Figure 3.1 Translating the analysis model into a software design
	3.1.2.1 Design and Software Quality
	Quality Attributes:
	3.1.2.2 The Evolution of Software Design
	3.2 DESIGN CONCEPTS
	3.2.1 Abstraction
	3.2.2 Software Architecture
	3.2.3 Patterns
	3.2.4 Separation of Concerns
	3.2.5 Modularity
	Figure 3.2 Modularity and software cost
	3.2.6 Information Hiding
	3.2.7 Functional Independence
	3.2.8 Refinement
	3.2.9 Aspects
	3.2.10 Refactoring
	3.2.11 Object-Oriented Design Concepts:
	3.2.12 Design Classes
	3.3 DESIGN MODEL
	Dimensions of the design model
	Figure 3.3 Boundary between Analysis and Design Models
	3.3.2 Architectural Design Elements
	3.3.3 Interface Design Elements
	3.3.4 Component -Level Design Elements
	Figure 3.4 A UML component diagram
	Figure 3.5 A UML deployment diagram
	1. Evaluate the "first iteration" of the program structure to reduce coupling and improve cohesion.
	2. Attempt to minimize structures with high fan-out; strive for fan-in as depth increases.
	3. Keep the scope of effect of a module within the scope of control of that module.
	Figure 3.6 Program structures
	5. Define modules whose function is predictable, but avoid modules that are overly restrictive.
	6. Strive for “controlled entry” modules by avoiding "pathological connections."
	3.5 ARCHITECTURAL DESIGN
	3.5.1.1 What Is Architecture?
	3.5.1.2 Why is Architecture Important?
	3.6 ARCHITECTURAL STYLES
	3.6.1 A Brief Taxonomy of Styles and Patterns a)Data-centered architectures.
	Figure 3.7 Data-centered architecture
	b) Data-flow architectures.
	Figure 3.8 Data-flow architecture
	Figure 3.9 Main program/subprogram architecture
	d) Object-oriented architectures.
	e) Layered architectures.
	Figure 3.10 Layered architecture
	3.6.3 Organization and Refinement
	a) Control
	b) Data
	3.7 ARCHITECTURAL DESIGN
	3.7.1 Representing the System in Context
	Figure 3.11 Architectural context diagram
	Figure 3.12 Architectural context diagram for the SafeHome security function
	Figure 3.13 UML relationships for SafeHome security function archetypes
	3.7.4 Describing Instantiations of the System
	3.8 ARCHITECTURAL MAPPING USING DATA FLOW
	3.8.1 Transform Mapping
	Step 1. Review the fundamental system model.
	Figure 3.14 Context level 0 DFD for Safe Home Step 2. Review and refine data flow diagrams for the software.
	Figure3.15 Level 1 DFD for the SafeHome security function
	Step 3. Determine whether the DFD has transform or transaction flow characteristics.
	Figure 3.16 Level 2 DFD that refines the monitor sensors transform
	Figure 3.17 Level 3 DFD for monitor sensors with flow boundaries
	Step 5. Perform "first-level factoring."
	Figure 3.18 Level 3 DFD for monitor sensors with flow boundaries
	Figure 3.19 First-level factoring for monitor sensors Step 6. Perform "second-level factoring."
	Figure 3.20 Second-layer Factoring
	Figure 3.21 First-iteration program structure for monitor sensors
	Figure 3.22 Refined program structure for monitor sensors
	An Example
	Design Steps
	Step 1. Review the fundamental system model. (1)
	Step 4. Identify the transaction centre and the flow characteristics along each of the action paths.
	Step 5. Map the DFD in a program structure amenable to transaction processing.
	Figure 3.24Transaction mapping
	Figure 3.25First-level factoring for user interaction subsystem
	Figure 3.26 First-iteration architecture for user interaction subsystem
	1. Place the user in control.
	1. Place the user in control. (1)
	2. Reduce the user’s memory load.
	3. Make the interface consistent.
	 Allow the user to put the current task into a meaningful context.
	3.10.1 Interface Analysis and Design Models
	Design model:
	Mental model
	Implementation model:
	3.10.2 The Process
	Figure 3.27The user interface design process
	3.11 INTERFACE ANALYSIS
	3.11.1 User Analysis
	3.11.2 Task Analysis and Modelling:
	Use cases.
	Task elaboration.
	Object elaboration.
	Workflow analysis.
	Hierarchical representation.
	User task: Requests that a prescription be refilled
	Figure 3.28 Swimlane diagram for prescription refill function
	3.11.4 Analysis of the Work Environment
	3.12 INTERFACE DESIGN STEPS
	3.12.1 Applying Interface Design Steps
	3.12.2 User Interface Design Patterns
	3.12.3 Design Issues
	Response time:
	Help facilities
	Error handling
	Menu and command labelling
	Application accessibility
	Internationalization
	3.13 COMPONENT LEVEL DESIGN:
	3.14 DESIGNING CLASS-BASED COMPONENTS
	3.14.1 Basic Design Principles
	The Open-Closed Principle (OCP)
	The Liskov Substitution Principle (LSP)
	Dependency Inversion Principle (DIP)
	The Interface Segregation Principle (ISP)
	The Release Reuse Equivalency Principle (REP)
	The Common Closure Principle (CCP)
	f)The Common Reuse Principle (CRP).
	3.14.2 Component-Level Design Guidelines
	3.14.3 Cohesion:
	Figure 3.29 Layer cohesion
	Layer.
	3.14.4 Coupling
	3.15 TRADITIONAL COMPONENTS
	3.15.1 Graphical Design Notation:
	Figure 3.30 Flowchart constructs
	3.15.2 Tabular Design Notation
	Table 3.1 Decision table nomenclature

