
CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.1 Jeppiaar Institute of Technology

UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE

Computing a Binomial Coefficient –Floyd’ algorithm – Optimal Binary Search Trees –

Multi stage graph-Coin changing problem- Knapsack Problem and Memory functions.

Greedy Technique–Knapsack problem-container loading problem- Prim’s algorithm-

Kruskal's Algorithm- Dijkstra's Algorithm-optimal merge pattern-Huffman Trees

DYNAMIC PROGRAMMING

Dynamic programming is a technique for solving problems with overlapping

subproblems.Typically, these subproblems arise from a recurrence relating a given

problem’s solution to solutions of its smaller subproblems. Rather than solving overlapping

subproblems again and again, dynamic programming suggests solving each of the smaller

subproblems only once and recording the results in a table from which a solution to the

original problem can then be obtained.

This technique can be illustrated by revisiting the Fibonacci numbers. The Fibonacci

numbers are the elements of the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

which can be defined by the simple recurrence

F(n) = F(n − 1) + F(n − 2) for n > 1

Since a majority of dynamic programming applications deal with optimization problems, we

also need to mention a general principle that underlines such applications. Richard Bellman

called it the principle of optimality.

3.1 COMPUTING A BINOMIAL COEFFICIENT

Computing binomial coefficients is non optimization problem but can be solved using

dynamic programming. Binomial coefficients are represented by C(n, k) or (n
k) and can be

used to represent the coefficients of a binomail:

(a + b)n = C(n, 0)an + ... + C(n, k)an-kbk + + C(n, n)bn

The recursive relation is defined by the prior

power C(n, k) = C(n-1, k-1) + C(n-1, k)

for n > k > 0 IC C(n, 0) = C(n, n) = 1

Dynamic algorithm constructs a nxk table, with the first column and diagonal filled out

using the IC.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.2 Jeppiaar Institute of Technology

j=1 i=1 j=1

Construct the table:

The table is then filled out iteratively, row by row using the recursive relation.

Algorithm Binomial(n, k)

for i ← 0 to n do // fill out the table row wise

for i = 0 to min(i, k) do

if j==0 or j==i then C[i, j] ← 1 // IC

else C[i, j] ← C[i-1, j-1] + C[i-1, j] // recursive relation

return C[n, k]

The cost of the algorithm is filing out the table. Addition is the basic operation. Because k

≤ n, the sum needs to be split into two parts because only the half the table needs to be filled

out for i

< k and remaining part of the table is filled out across the entire row.

A(n, k) = sum for upper triangle + sum for the lower rectangle

= ∑i=1
k ∑ i-1 1 + ∑ n ∑ k 1

= ∑i=1
k (i-1) + ∑i=1

n k

= (k-1)k/2 + k(n-k) ε Θ(nk)

0

1

1

1

1

k

2 ... k-1 k

0

1

2

.

1

2 1

n

.

.

k

.

1 1

.

.

n-1

n

1

1

C(n-1, k-1)

C(n, k)

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.3 Jeppiaar Institute of Technology

3.2 FLOYD’S ALGORITHMS

Warshall’s algorithm for computing the transitive closure of a directed graph and

Floyd’s algorithm for the all-pairs shortest-paths problem. These algorithms are based on

essentially the same idea: exploit a relationship between a problem and its simpler rather

than smaller version.

Floyd’s Algorithm for the All-Pairs Shortest-Paths Problem

Given a weighted connected graph (undirected or directed), the all-pairs shortest

paths problem asks to find the distances—i.e., the lengths of the shortest paths— from each

vertex to all other vertices. It is convenient to record the lengths of shortest paths in an n × n

matrix D called the distance matrix: the element dij in the ith row and the jth column of this

matrix indicates the length of the shortest path from the ith vertex to the jth vertex. For an

example, see Figure 8.14. We can generate the distance matrix with an algorithm that is very

similar to Warshall’s algorithm.

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices

through a series of n × n matrices:

D(0), . . . , D(k−1), D(k), . . . , D(n).

we can compute all the elements of each matrix D(k) from its immediate predecessorD(k−1)

in series. Let d(k) ij be the element in the ith row and the jth column of matrix D(k). This

means that d(k) ij is equal to the length of the shortest path among all paths from the ith vertex

vi to the jth vertex vj with their intermediate vertices numbered not higher than k:

vi, a list of intermediate vertices each numbered not higher than k, vj .

vi, vertices numbered ≤ k − 1, vk, vertices numbered ≤ k − 1, vj .

The application of Floyd’s algorithm to the graph in Figure 8.14 is illustrated in Figure 8.16.

ALGORITHM Floyd(W[1..n, 1..n])

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem

//Input: The weight matrix W of a graph with no negative-length cycle

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.4 Jeppiaar Institute of Technology

//Output: The distance matrix of the shortest paths’ lengths

D ←W //is not necessary if W can be overwritten

for k←1 to n do

for i ←1 to n do

for j ←1 to n do

D[i, j]←min{D[i, j], D[i, k]+ D[k, j]}

return D

3.3 KNAPSACK PROBLEM

Given a set of items, each with a weight and a value, determine a subset of items to include in

a collection so that the total weight is less than or equal to a given limit and the total value is

as large as possible.

The knapsack problem is in combinatorial optimization problem.

Applications

In many cases of resource allocation along with some constraint, the problem can be derived

in a similar way of Knapsack problem. Following is a set of example.

• Finding the least wasteful way to cut raw materials

• portfolio optimization

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.5 Jeppiaar Institute of Technology

• Cutting stock problems

Based on the nature of the items, Knapsack problems are categorized as

• Fractional Knapsack

• Knapsack

Fractional Knapsack

In this case, items can be broken into smaller pieces, hence the thief can select fractions of

items.

According to the problem statement,

• There are n items in the store

• Weight of ith item wi>0wi>0

• Profit for ith item pi>0pi>0 and

• Capacity of the Knapsack is W

In this version of Knapsack problem, items can be broken into smaller pieces. So, the thief

may take only a fraction xi of ith item.

0⩽xi⩽10⩽xi⩽1

The ith item contributes the weight xi.wixi.wi to the total weight in the knapsack and

profit xi.pixi.pi to the total profit.

Hence, the objective of this algorithm is to

maximize∑n=1n(xi.pi)maximize∑n=1n(xi.pi)

subject to constraint,

∑n=1n(xi.wi)⩽W∑n=1n(xi.wi)⩽W

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add a

fraction of one of the remaining items and increase the overall profit.

Thus, an optimal solution can be obtained by

∑n=1n(xi.wi)=W∑n=1n(xi.wi)=W

In this context, first we need to sort those items according to the value of piwipiwi, so

that pi+1wi+1pi+1wi+1 ≤ piwipiwi . Here, x is an array to store the fraction of items.

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)

for i = 1 to n

 do x[i] = 0

weight = 0

for i = 1 to n

 if weight + w[i] ≤ W then

 x[i] = 1

 weight = weight + w[i]

 else

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.6 Jeppiaar Institute of Technology

 x[i] = (W - weight) / w[i]

 weight = W

 break

return x

Analysis

If the provided items are already sorted into a decreasing order of piwipiwi, then the whileloop

takes a time in O(n); Therefore, the total time including the sort is in O(n logn).

Example

Let us consider that the capacity of the knapsack W = 60 and the list of provided items are

shown in the following table −

Item A B C D

Profit 280 100 120 120

Weight 40 10 20 24

Ratio (piwi)(piwi) 7 10 6 5

As the provided items are not sorted based on piwipiwi. After sorting, the items are as shown

in the following table.

Item B A C D

Profit 100 280 120 120

Weight 10 40 20 24

Ratio (piwi)(piwi) 10 7 6 5

Solution

After sorting all the items according to piwipiwi. First all of B is chosen as weight of B is less

than the capacity of the knapsack. Next, item A is chosen, as the available capacity of the

knapsack is greater than the weight of A. Now, C is chosen as the next item. However, the

whole item cannot be chosen as the remaining capacity of the knapsack is less than the weight

of C.

Hence, fraction of C (i.e. (60 − 50)/20) is chosen.

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item can be

selected.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.7 Jeppiaar Institute of Technology

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440

This is the optimal solution. We cannot gain more profit selecting any different combination

of items.

3.4 DYNAMIC PROGRAMMING – COIN CHANGE PROBLEM

Objective: Given a set of coins and amount, Write an algorithm to find out how many ways

we can make the change of the amount using the coins given.

This is another problem in which i will show you the advantage of Dynamic programming over

recursion.

approach:

Recursive Solution:

▪ We can solve it using recursion.

▪ For every coin we have an option to include it in solution or exclude it.

Time Complexity : 2n

Given a value N, if we want to make change for N cents, and we have infinite supply of each

of S = { S1, S2, .. , Sm} valued coins, how many ways can we make the change? The order of

coins doesn’t matter.

For example, for N = 4 and S = {1,2,3}, there are four solutions: {1,1,1,1},{1,1,2},{2,2},{1,3}.

So output should be 4. For N = 10 and S = {2, 5, 3, 6}, there are five solutions: {2,2,2,2,2},

{2,2,3,3}, {2,2,6}, {2,3,5} and {5,5}. So the output should be 5.

Optimal Substructure

To count the total number of solutions, we can divide all set solutions into two sets.

1) Solutions that do not contain mth coin (or Sm).

2) Solutions that contain at least one Sm.

Let count(S[], m, n) be the function to count the number of solutions, then it can be written as

sum of count(S[], m-1, n) and count(S[], m, n-Sm).

Therefore, the problem has optimal substructure property as the problem can be solved using

solutions to sub problems.

http://algorithms.tutorialhorizon.com/introduction-to-dynamic-programming-fibonacci-series/

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.8 Jeppiaar Institute of Technology

2) Overlapping Sub problems

Following is a simple recursive implementation of the Coin Change problem. The

implementation simply follows the recursive structure mentioned above.

int count(int S[], int m, int n)

{

 // If n is 0 then there is 1 solution

 // (do not include any coin)

 if (n == 0)

 return 1;

 // If n is less than 0 then no

 // solution exists

 if (n < 0)

 return 0;

 // If there are no coins and n

 // is greater than 0, then no

 // solution exist

 if (m <=0 && n >= 1)

 return 0;

 // count is sum of solutions (i)

 // including S[m-1] (ii) excluding S[m-1]

 return count(S, m - 1, n) + count(S, m, n-S[m-1]);

3.5 MULTISTAGE GRAPH

1. A multistage graph G = (V,E) is a directed graph in which the vertices are portioned

into K

> = 2 disjoint sets Vi, 1 <= i<= k.

2. In addition, if < u,v > is an edge in E, then u < = Vi and V Vi+1 for some i, 1<= i <

k.

3. If there will be only one vertex, then the sets Vi and Vk are such that [Vi]=[Vk] = 1.

4. Let ‘s’ and ‘t’ be the source and destination respectively.

5. The cost of a path from source (s) to destination (t) is the sum of the costs of the

edger on the path.

6. The MULTISTAGE GRAPH problem is to find a minimum cost path from ‘s’ to ‘t’.

7. Each set Vi defines a stage in the graph. Every path from ‘s’ to ‘t’ starts in stage-1,

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.9 Jeppiaar Institute of Technology

goes to stage-2 then to stage-3, then to stage-4, and so on, and terminates in stage-k.

BACKWARD METHOD

➢ if there one ‘K’ stages in a graph using back ward approach. we will find out the

cost of each & every vertex starting from 1st

stage to the kth stage.

➢ We will find out the minimum cost path from destination to source (ie)[from

stage k to stage 1]

PROCEDURE:

1. It is similar to forward approach, but differs only in two or three ways.

2. Maintain a cost matrix to store the cost of every vertices and a distance matrix to

store the minimum distance vertex.

3. Find out the cost of each and every vertex starting from vertex 1 up to vertex k.

4. To find out the path star from vertex ‘k’, then the distance array D (k) will give the

minimum cost neighbor vertex which in turn gives the next nearest neighbor vertex

and proceed till we reach the destination.

STEP:

Cost(1) = 0 => D(1)=0

Cost(2) = 9 => D(2)=1

Cost(3) = 7 => D(3)=1

Cost(4) = 3 => D(4)=1

Cost(5) = 2 => D(5)=1

Cost(6) =min(c (2,6) + cost(2),c (3,6) + cost(3)) =min(13,9)

cost(6) = 9 =>D(6)=3

Cost(7) =min(c (3,7) + cost(3),c (5,7) + cost(5) ,c (2,7) + cost(2))

=min(14,13,11) cost(7) = 11 =>D(7)=2

Cost(8) =min(c (2,8) + cost(2),c (4,8) + cost(4) ,c (5,8) +cost(5))

=min(10,14,10) cost(8) = 10 =>D(8)=2

Cost(9) =min(c (6,9) + cost(6),c (7,9) + cost(7))

=min(15,15) cost(9) = 15 =>D(9)=6

Cost(10)=min(c(6,10)+cost(6),c(7,10)+cost(7)),c(8,10)+cost(8))

=min(14,14,15) cost(10)= 14 =>D(10)=6

Cost(11) =min(c (8,11) + cost(8)) cost(11) = 16 =>D(11)=8

cost(12)=min(c(9,12)+cost(9),c(10,12)+cost(10),c(11,12)+cost(11))

=min(19,16,21) cost(12) = 16 =>D(12)=10

PATH:

Start from vertex-12 D(12) = 10

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.10 Jeppiaar Institute of Technology

 D(10) = 6

D(6) = 3

D(3) = 1

So the minimum cost path is,

1 7 3 2 6 5 10 2 12

The cost is 16.

ALGORITHM : BACKWARD METHOD

Algorithm BGraph (G,k,n,p)

// The I/p is a k-stage graph G=(V,E) with ‘n’ vertex.

// Indexed in order of stages E is a set of edges.

// and c[i,J] is the cost of<i,j>,p[1:k] is a minimum cost path.

{

bcost[1]

=0.0;

for j=2

to n do

{

//compute bcost[j],

// let ‘r’ be the vertex such that <r,j> is an edge of ‘G’ &

// bcost[r]+c[r,j] is minimum.

bcost[j] = bcost[r] +

c[r,j]; d[j] =r;

}

// find a minimum cost path.

P[1]=1;

P[k]=n;

For j= k-1 to 2

do

P[j]=d[p[j+1]]

;

3.5 OPTIMAL BINARY SEARCH TREES

A binary search tree is one of the most important data structures in computer science.

One of its principal applications is to implement a dictionary, a set of elements with the

operations of searching, insertion, and deletion. If probabilities of searching for elements of

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.11 Jeppiaar Institute of Technology

a set are known—e.g., from accumulated data about past searches—it is natural to pose a

question about an optimal binary search tree for which the average number of comparisons

in a search is the smallest possible.

As an example, consider four keys A, B, C, and D to be searched for with probabilities

0.1, 0.2, 0.4, and 0.3, respectively. Figure 8.7 depicts two out of 14 possible binary search

trees containing these keys. The average number of comparisons in a successful search in

the first of these trees is 0.1 . 1+ 0.2 . 2 + 0.4 . 3+ 0.3 . 4 = 2.9, and for the second one it is

0.1 . 2 + 0.2 . 1+

0.4 . 2 + 0.3 . 3= 2.1. Neither of these two trees is, in fact, optimal.

For our tiny example, we could find the optimal tree by generating all 14 binary

search trees with these keys. As a general algorithm, this exhaustive-search approach is

unrealistic: the total number of binary search trees with n keys is equal to the nth Catalan

number,

To derive a recurrence underlying a dynamic programming algorithm, we will

consider all possible ways to choose a root ak among the keys ai, . . . , aj . For such a binary

search tree (Figure 8.8), the root contains key ak, the left subtree T k−1 i contains keys ai, .

. . , ak−1 optimally arranged, and the right subtree Tj k+1 contains keys ak+1, . . . , aj also

optimally arranged.

If we count tree levels starting with 1 to make the comparison numbers equal the

keys’ levels, the following recurrence relation is obtained:

We assume in formula (8.8) that C(i, i − 1) = 0 for 1≤ i ≤ n + 1, which can be interpreted

as the number of comparisons in the empty tree. Note that this formula implies that

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.12 Jeppiaar Institute of Technology

as it should be for a one-node binary search tree containing ai .

The two-dimensional table in Figure 8.9 shows the values needed for computing C(i,

j) by formula they are in row i and the columns to the left of column j and in column j and

the rows below row i. The arrows point to the pairs of entries whose sums are computed in

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the

table along its diagonals, starting with all zeros on the main diagonal and given probabilities

pi, 1≤ i ≤ n, right above it and moving toward the upper right corner.

key A B C D

probability 0.1 0.2 0.4 0.3

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.13 Jeppiaar Institute of Technology

ALGORITHM OptimalBST(P [1..n])

for i ←1 to n do

C[i, i −

1]←0 C[i,

i]←P[i]

R[i, i]←i

C[n + 1, n]←0

for d ←1 to n − 1 do //diagonal count

for i ←1 to n − d do

j ←i

+ d

minv

al←

∞

for k←i to j do

if C[i, k − 1]+ C[k + 1, j]< minval

minval←C[i, k − 1]+ C[k + 1, j]; kmin←k

R[i, j]←kmin

sum←P[i]; for s ←i + 1 to j do sum←sum + P[s]

C[i, j]←minval + sum

return C[1, n], R

The algorithm’s space efficiency is clearly quadratic; the time efficiency of this version of the

algorithm is cubic.

3.6 THE KNAPSACK PROBLEM AND MEMORY FUNCTIONS

Knapsack problem: given n items of known weights w1, . . . , wn and values v1, . . . , vn

and a knapsack of capacity W, find the most valuable subset of the items that fit into the

knapsack.

To design a dynamic programming algorithm, we need to derive a recurrence relation

that expresses a solution to an instance of the knapsack problem in terms of solutions to its

smaller subinstances. Let us consider an instance defined by the first i items, 1≤ i ≤ n, with

weights w1, .

. . , wi, values v1, . . . , vi , and knapsack capacity j, 1 ≤ j ≤ W. Let F(i, j) be the value of an

optimal solution to this instance, i.e., the value of the most valuable subset of the first i items

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.14 Jeppiaar Institute of Technology

that fit into the knapsack of capacity j.We can divide all the subsets of the first i items that

fit the knapsack of capacity j into two categories: those that do not include the ith item and

those that do. Note the following:

1. Among the subsets that do not include the ith item, the value of an optimal subset is, by

definition, F(i − 1, j).

2. Among the subsets that do include the ith item (hence, j – wi ≥ 0), an optimal subset is

made up of this item and an optimal subset of the first i − 1 items that fits into the knapsack

of capacity j − wi . The value of such an optimal subset is vi + F(i − 1, j − wi).

It is convenient to define the initial conditions as follows:

Our goal is to find F(n, W), the maximal value of a subset of the n given items that fit into

the knapsack of capacity W, and an optimal subset itself.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.15 Jeppiaar Institute of Technology

Thus, the maximal value is F(4, 5) = $37. We can find the composition of an optimal

subset by backtracing the computations of this entry in the table. Since F(4, 5) > F(3, 5),

item 4 has to be included in an optimal solution along with an optimal subset for filling 5 −

2 = 3 remaining units of the knapsack capacity. The value of the latter is F(3, 3). Since F(3,

3) = F(2, 3), item 3 need not be in an optimal subset. Since F(2, 3) > F(1, 3), item 2 is a part

of an optimal selection, which leaves element F(1, 3 − 1) to specify its remaining

composition. Similarly, since F(1, 2) > F(0, 2), item 1 is the final part of the optimal solution

{item 1, item 2, item 4}. The

time efficiency and space efficiency of this algorithm are both in Θ(nW).

Memory Functions

Dynamic programming deals with problems whose solutions satisfy a recurrence

relation with overlapping subproblems. The direct top-down approach to finding a solution

to such a recurrence leads to an algorithm that solves common subproblems more than once

and hence is very inefficient. The classic dynamic programming approach, on the other hand,

works bottom up: it fills a table with solutions to all smaller subproblems, but each of them

is solved only once. An unsatisfying aspect of this approach is that solutions to some of these

smaller subproblems are often not necessary for getting a solution to the problem given.

Since this drawback is not present in the top-down approach, it is natural to try to combine

the strengths of the top-down and bottom-up approaches. The goal is to get a method that

solves only subproblems that are

necessary and does so only once. Such a method exists; it is based on using memory functions.

This method solves a given problem in the top-down manner but, in addition, maintains a

table. ALGORITHM MFKnapsack(i, j)

if F[i, j]< 0

if j <Weights[i]

value←MFKnapsack(i − 1, j)

else

value←max(MFKnapsack(i − 1, j),Values[i]+ MFKnapsack(i − 1, j

−Weights[i]))

F[i, j]←value

return F[i, j]

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.16 Jeppiaar Institute of Technology

The table in Figure 8.6 gives the results. Only 11 out of 20 nontrivial values (i.e., not those

in row 0 or in column 0) have been computed. Just one nontrivial entry, V (1, 2), is retrieved

rather than being recomputed.

3.7 GREEDY TECHNIQUE

Change-making problem: give change for a specific amount n with the least number of

coins of the denominations d1>d2 > . . .>dm used in that locale.

For example, the widely used coin denominations in the United States are d1 = 25

(quarter), d2 = 10 (dime), d3 = 5 (nickel), and d4 = 1 (penny). How would you give change

with coins of these denominations of, say, 48 cents?

If you came up with the answer 1 quarter, 2 dimes, and 3 pennies. ―Greedy‖

thinking leads to giving one quarter because it reduces the remaining amount the most,

namely, to 23 cents. In the second step, you had the same coins at your disposal, but you

could not give a quarter, because it would have violated the problem’s constraints. So your

best selection in this step was one dime, reducing the remaining amount to 13 cents. Giving

one more dime left you

with 3 cents to be given with three pennies. The greedy approach suggests constructing a

solution through a sequence of steps, each expanding a partially constructed solution

obtained so far, until a complete solution to the problem is reached. On each step the choice

made must be:

• feasible, i.e., it has to satisfy the problem’s constraints

• locally optimal, i.e., it has to be the best local choice among all feasible choices

available on that step

• irrevocable, i.e., once made, it cannot be changed on subsequent steps of the

algorithm.

3.7PRIM’S ALGORITHM

The following problem arises naturally in many practical situations: given n points,

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.17 Jeppiaar Institute of Technology

connect them in the cheapest possible way so that there will be a path between every pair of

points.

A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a

tree) that contains all the vertices of the graph. If such a graph has weights assigned to its

edges, a minimum spanning tree is its spanning tree of the smallest weight, where the weight

of a tree is defined as the sum of the weights on all its edges. The minimum spanning tree

problem is the problem of finding a minimum spanning tree for a given weighted connected

graph.

Prim’s algorithm constructs a minimum spanning tree through a sequence of

expanding subtrees. The initial subtree in such a sequence consists of a single vertex selected

arbitrarily from the set V of the graph’s vertices. On each iteration, the algorithm expands

the current tree in the greedy manner by simply attaching to it the nearest vertex not in that

tree. After we have identified a vertex u* to be added to the tree, we need to perform two

operations: Move u* from the set V − VT to the set of tree vertices VT. For each remaining

vertex u in V − VT that is connected to u* by a shorter edge than the u’s current distance

label, update its labels by u* and the weight of the edge between u* and u, respectively.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.18 Jeppiaar Institute of Technology

3.8KRUSKAL’S ALGORITHM

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph

G

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.19 Jeppiaar Institute of Technology

= {V, E} as an acyclic subgraph with |V| − 1 edges for which the sum of the edge weights is

the smallest. Consequently, the algorithm constructs a minimum spanning tree as an

expanding sequence of subgraphs that are always acyclic but are not necessarily connected

on the intermediate stages of the algorithm.

The algorithm begins by sorting the graph’s edges in nondecreasing order of their

weights. Then, starting with the empty subgraph, it scans this sorted list, adding the next

edge on the list to the current subgraph if such an inclusion doesnot create a cycle and simply

skipping the edge otherwise.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.20 Jeppiaar Institute of Technology

3.9 DIJKSTRA’S ALGORITHM

Single-source shortest-paths problem: for a given vertex called the source in a

weighted connected graph, find shortest paths to all its other vertices. The single-source

shortest-paths problem asks for a family of paths, each leading from the source to a different

vertex in the graph, though some paths may, of course, have edges in common.

• There are several well-known algorithms for finding shortest paths, including Floyd’s

algorithm. Here, we consider the best- known algorithm for the single-source shortest-

paths problem, called Dijkstra’s algorithm. This algorithm is applicable to undirected

and directed graphs with nonnegative weights only.

• Dijkstra’s algorithm finds the shortest paths to a graph’s vertices in order of their distance

from a given source.

• First, it finds the shortest path from the source to a vertex nearest to it, then to a second

nearest, and so on. These vertices, the source, and the edges of the shortest paths leading

to them from the source form a subtree Ti of the given graph.

• Since all the edge weights are nonnegative, the next vertex nearest to the source can be

found among the vertices adjacent to the vertices of Ti . The set of vertices adjacent to the

vertices in Ti can be referred to as ―fringe vertices‖; they are the candidates from which

Dijkstra’s algorithm selects the next vertex nearest to the source.

To identify the ith nearest vertex, the algorithm computes, for every fringe vertex u, the sum

of the distance to the nearest tree vertex v (given by the weight of the edge (v, u)) and the dv

of the shortest path from the source to v (previously determined by the algorithm) and then

selects the vertex with the smallest such sum.

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.21 Jeppiaar Institute of Technology

ALGORITHM Dijkstra(G, s)

//Dijkstra’s algorithm for single-source shortest paths

//Input: A weighted connected graph G = {V, E} with nonnegative weights and its vertex s

//Output: The length dv of a shortest path from s to v and its penultimate vertex pv

// for every vertex v in V

Initialize(Q) //initialize priority queue to empty

for every vertex v in V

dv ←∞; pv ←null

Insert(Q, v, dv) //initialize vertex priority in the priority queue

ds ←0; Decrease(Q, s, ds) //update priority of s

with ds VT ← ∅

for i ←0 to |V| − 1 do

u ∗ ←DeleteMin(Q) //delete the minimum priority element

VT ←VT ∪ {u∗ }

for every vertex u in V − VT that is adjacent to

u∗ do if du∗ + w(u∗ , u) < du

du ←du∗ + w(u∗ , u); pu ←u∗

Decrease(Q, u, du)

The time efficiency of Dijkstra’s algorithm depends on the data structures used for

implementing the priority queue and for representing an input graph itself.

The shortest paths (identified by following nonnumeric labels backward from a

destination vertex in the left column to the source) and their lengths (given by numeric labels

of the tree vertices) are as follows:

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.22 Jeppiaar Institute of Technology

From a to b : a − b of length

3 From a to d : a − b − d of

length 5 From a to c : a − b −

c of length 7

From a to e : a − b − d − e of length 9

3.10 Optimal Merge pattern

Merge a set of sorted files of different length into a single sorted file. We need to find an

optimal solution, where the resultant file will be generated in minimum time.

If the number of sorted files are given, there are many ways to merge them into a single sorted

file. This merge can be performed pair wise. Hence, this type of merging is called as 2-way

merge patterns.

Two-way merge patterns can be represented by binary merge trees. Let us consider a set

of n sorted files {f1, f2, f3, …, fn}. Initially, each element of this is considered as a single node

binary tree. To find this optimal solution, the following algorithm is used.

Algorithm: TREE (n)

for i := 1 to n – 1 do

 declare new node

 node.leftchild := least (list)

 node.rightchild := least (list)

 node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)

 insert (list, node);

return least (list);

At the end of this algorithm, the weight of the root node represents the optimal cost.

Example

Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number of elements

respectively.

If merge operations are performed according to the provided sequence, then

M1 = merge f1 and f2 => 20 + 30 = 50

M2 = merge M1 and f3 => 50 + 10 = 60

M3 = merge M2 and f4 => 60 + 5 = 65

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.23 Jeppiaar Institute of Technology

M4 = merge M3 and f5 => 65 + 30 = 95

Hence, the total number of operations is

50 + 60 + 65 + 95 = 270

Now, the question arises is there any better solution?

Sorting the numbers according to their size in an ascending order, we get the following

sequence −

f4, f3, f1, f2, f5

Hence, merge operations can be performed on this sequence

M1 = merge f4 and f3 => 5 + 10 = 15

M2 = merge M1 and f1 => 15 + 20 = 35

M3 = merge M2 and f2 => 35 + 30 = 65

M4 = merge M3 and f5 => 65 + 30 = 95

Therefore, the total number of operations is

15 + 35 + 65 + 95 = 210

Obviously, this is better than the previous one.

In this context, we are now going to solve the problem using this algorithm.

Initial Set

Step-1

Step-2

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.24 Jeppiaar Institute of Technology

Step-3

Step-4

Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of comparisons

3.11 HUFFMAN TREES AND CODES

Suppose we have to encode a text that comprises symbols from some n-symbol

alphabet by assigning to each of the text’s symbols some sequence of bits called the

codeword. For example, we can use a fixed-length encoding that assigns to each symbol a

bit string of the same length m (m ≥ log2 n). This is exactly what the standard ASCII code

does. One way of getting a coding scheme that yields a shorter bit string on the average is

based on the old idea of assigning shorter codewords to more frequent symbols and longer

codewords to less frequent symbols.

Variable-length encoding, which assigns codewords of different lengths to different

symbols, introduces a problem that fixed-length encoding does not have. To avoid this

complication, we can limit ourselves to the so-called prefix-free (or simply prefix) codes.

In a prefix code, no codeword is a prefix of a codeword of another symbol. Hence, with such

an encoding, we can simply scan a bit string until we get the first group of bits that is a

codeword for some symbol, replace these bits by this symbol, and repeat this operation until

the bit string’s end is reached.

If we want to create a binary prefix code for some alphabet, it is natural to associate

the alphabet’s symbols with leaves of a binary tree in which all the left edges are labeled by

0 and all the right edges are labeled by 1. The codeword of a symbol can then be obtained

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.25 Jeppiaar Institute of Technology

by recording the labels on the simple path from the root to the symbol’s leaf.

Huffman’s algorithm

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet given.

Record the frequency of each symbol in its tree’s root to indicate the tree’s weight.

Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the

smallest weight (ties can be broken arbitrarily, but see Problem 2 in this section’s exercises).

Make them the left and right subtree of a new tree and record the sum of their weights in the

root of the new tree as its weight. A tree constructed by the above algorithm is called a

Huffman tree. It defines—in the manner described above—a Huffman code.

EXAMPLE Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence

frequencies in a text made up of these symbols:

symbol A B C D _

frequency 0.35 0.1 0.2 0.2 0.15

CS8451: Design and Analysis of Algorithm Department of CSE

2020-2021 3.26 Jeppiaar Institute of Technology

Example of constructing a Huffman coding tree. The resulting

codewords are as follows:

symbol A B C D _

frequency 0.35 0.1 0.2 0.2 0.15

codeword 11 100 00 01 101

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD.

With the occurrence frequencies given and the codeword lengths obtained, the

average number of bits per symbol in this code is

2 . 0.35 + 3 . 0.1+ 2 . 0.2 + 2 . 0.2 + 3 . 0.15 = 2.25.

