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UNIT III DYNAMIC PROGRAMMING AND GREEDY TECHNIQUE 

Computing a Binomial Coefficient –Floyd’ algorithm – Optimal Binary Search Trees –

Multi stage graph-Coin changing problem- Knapsack Problem and Memory functions. 

Greedy Technique–Knapsack problem-container loading problem- Prim’s algorithm- 

Kruskal's Algorithm- Dijkstra's Algorithm-optimal merge pattern-Huffman Trees 

 
DYNAMIC PROGRAMMING 

Dynamic programming is a technique for solving problems with overlapping 

subproblems.Typically, these subproblems arise from a recurrence relating a given 

problem’s solution to solutions of its smaller subproblems. Rather than solving overlapping 

subproblems again and again, dynamic programming suggests solving each of the smaller 

subproblems only once and recording the results in a table from which a solution to the 

original problem can then be obtained. 

This technique can be illustrated by revisiting the Fibonacci numbers. The Fibonacci 

numbers are the elements of the sequence 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . , 

which can be defined by the simple recurrence 

F(n) = F(n − 1) + F(n − 2) for n > 1 

Since a majority of dynamic programming applications deal with optimization problems, we 

also need to mention a general principle that underlines such applications. Richard Bellman 

called it the principle of optimality. 

3.1 COMPUTING A BINOMIAL COEFFICIENT 

 

Computing binomial coefficients is non optimization problem but can be solved using 

dynamic programming. Binomial coefficients are represented by C(n, k) or (n
k) and can be 

used to represent the coefficients of a binomail: 

 

(a + b)n  = C(n, 0)an + ... + C(n, k)an-kbk + .... + C(n, n)bn 

 

The recursive relation is defined by the prior 

power C(n, k) = C(n-1, k-1) + C(n-1, k) 

for n > k > 0 IC C(n, 0) = C(n, n) = 1 

Dynamic algorithm constructs a nxk table, with the first column and diagonal filled out 

using the IC. 
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j=1 i=1 j=1 

Construct the table: 

 

 
 

The table is then filled out iteratively, row by row using the recursive relation. 

 

Algorithm Binomial(n, k) 

 

for i ← 0 to n do // fill out the table row wise 

 

for i = 0 to min(i, k) do 

 

if j==0 or j==i then C[i, j] ← 1 // IC 

 

else C[i, j] ← C[i-1, j-1] + C[i-1, j] // recursive relation 

 

return C[n, k] 

 

The cost of the algorithm is filing out the table. Addition is the basic operation. Because k 

≤ n, the sum needs to be split into two parts because only the half the table needs to be filled 

out for i 

< k and remaining part of the table is filled out across the entire row. 

 

A(n, k) = sum for upper triangle + sum for the lower rectangle 

 

= ∑i=1
k ∑ i-1 1 + ∑ n ∑ k 1 

= ∑i=1
k (i-1) + ∑i=1

n k 

= (k-1)k/2 + k(n-k) ε Θ(nk) 
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3.2 FLOYD’S ALGORITHMS 

 
Warshall’s algorithm for computing the transitive closure of a directed graph and 

Floyd’s algorithm for the all-pairs shortest-paths problem. These algorithms are based on 

essentially the same idea: exploit a relationship between a problem and its simpler rather 

than smaller version. 

Floyd’s Algorithm for the All-Pairs Shortest-Paths Problem 

 
Given a weighted connected graph (undirected or directed), the all-pairs shortest 

paths problem asks to find the distances—i.e., the lengths of the shortest paths— from each 

vertex to all other vertices. It is convenient to record the lengths of shortest paths in an n × n 

matrix D called the distance matrix: the element dij in the ith row and the jth column of this 

matrix indicates the length of the shortest path from the ith vertex to the jth vertex. For an 

example, see Figure 8.14. We can generate the distance matrix with an algorithm that is very 

similar to Warshall’s algorithm. 

 

Floyd’s algorithm computes the distance matrix of a weighted graph with n vertices 

through a series of n × n matrices: 

D(0), . . . , D(k−1), D(k), . . . , D(n). 

we can compute all the elements of each matrix D(k) from its immediate predecessorD(k−1) 

in series. Let d(k) ij be the element in the ith row and the jth column of matrix D(k). This 

means that d(k) ij is equal to the length of the shortest path among all paths from the ith vertex 

vi to the jth vertex vj with their intermediate vertices numbered not higher than k: 

vi, a list of intermediate vertices each numbered not higher than k, vj .  

vi, vertices numbered ≤ k − 1, vk, vertices numbered ≤ k − 1, vj . 

The application of Floyd’s algorithm to the graph in Figure 8.14 is illustrated in Figure 8.16. 

ALGORITHM Floyd(W[1..n, 1..n]) 

//Implements Floyd’s algorithm for the all-pairs shortest-paths problem 

//Input: The weight matrix W of a graph with no negative-length cycle 
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//Output: The distance matrix of the shortest paths’ lengths 

D ←W //is not necessary if W can be overwritten 

for k←1 to n do 

for i ←1 to n do 

for j ←1 to n do 

D[i, j ]←min{D[i, j ], D[i, k]+ D[k, j]} 

return D 

 

3.3 KNAPSACK PROBLEM 

Given a set of items, each with a weight and a value, determine a subset of items to include in 

a collection so that the total weight is less than or equal to a given limit and the total value is 

as large as possible. 

The knapsack problem is in combinatorial optimization problem.  

Applications 

In many cases of resource allocation along with some constraint, the problem can be derived 

in a similar way of Knapsack problem. Following is a set of example. 

• Finding the least wasteful way to cut raw materials 

• portfolio optimization 
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• Cutting stock problems 

Based on the nature of the items, Knapsack problems are categorized as 

• Fractional Knapsack 

• Knapsack 

Fractional Knapsack 

In this case, items can be broken into smaller pieces, hence the thief can select fractions of 

items. 

According to the problem statement, 

• There are n items in the store 

• Weight of ith item wi>0wi>0 

• Profit for ith item pi>0pi>0 and 

• Capacity of the Knapsack is W 

In this version of Knapsack problem, items can be broken into smaller pieces. So, the thief 

may take only a fraction xi of ith item. 

0⩽xi⩽10⩽xi⩽1 

The ith item contributes the weight xi.wixi.wi to the total weight in the knapsack and 

profit xi.pixi.pi to the total profit. 

Hence, the objective of this algorithm is to 

maximize∑n=1n(xi.pi)maximize∑n=1n(xi.pi) 

subject to constraint, 

∑n=1n(xi.wi)⩽W∑n=1n(xi.wi)⩽W 

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add a 

fraction of one of the remaining items and increase the overall profit. 

Thus, an optimal solution can be obtained by 

∑n=1n(xi.wi)=W∑n=1n(xi.wi)=W 

In this context, first we need to sort those items according to the value of piwipiwi, so 

that pi+1wi+1pi+1wi+1 ≤ piwipiwi . Here, x is an array to store the fraction of items. 

Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)  

for i = 1 to n  

   do x[i] = 0  

weight = 0  

for i = 1 to n  

   if weight + w[i] ≤ W then   

      x[i] = 1  

      weight = weight + w[i]  

   else  
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      x[i] = (W - weight) / w[i]  

      weight = W  

      break  

return x 

Analysis 

If the provided items are already sorted into a decreasing order of piwipiwi, then the whileloop 

takes a time in O(n); Therefore, the total time including the sort is in O(n logn). 

Example 

Let us consider that the capacity of the knapsack W = 60 and the list of provided items are 

shown in the following table − 

Item A B C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

Ratio (piwi)(piwi) 7 10 6 5 

As the provided items are not sorted based on piwipiwi. After sorting, the items are as shown 

in the following table. 

Item B A C D 

Profit 100 280 120 120 

Weight 10 40 20 24 

Ratio (piwi)(piwi) 10 7 6 5 

Solution 

After sorting all the items according to piwipiwi. First all of B is chosen as weight of B is less 

than the capacity of the knapsack. Next, item A is chosen, as the available capacity of the 

knapsack is greater than the weight of A. Now, C is chosen as the next item. However, the 

whole item cannot be chosen as the remaining capacity of the knapsack is less than the weight 

of C. 

Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item can be 

selected. 
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The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60 

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440 

This is the optimal solution. We cannot gain more profit selecting any different combination 

of items. 

 

3.4 DYNAMIC PROGRAMMING – COIN CHANGE PROBLEM 

Objective: Given a set of coins and amount, Write an algorithm to find out how many ways 

we can make the change of the amount using the coins given. 

This is another problem in which i will show you the advantage of Dynamic programming over 

recursion. 

 

approach: 

Recursive Solution: 

▪ We can solve it using recursion. 

▪ For every coin we have an option to include it in solution or exclude it. 

Time Complexity : 2n 

 

Given a value N, if we want to make change for N cents, and we have infinite supply of each 

of S = { S1, S2, .. , Sm} valued coins, how many ways can we make the change? The order of 

coins doesn’t matter. 

For example, for N = 4 and S = {1,2,3}, there are four solutions: {1,1,1,1},{1,1,2},{2,2},{1,3}. 

So output should be 4. For N = 10 and S = {2, 5, 3, 6}, there are five solutions: {2,2,2,2,2}, 

{2,2,3,3}, {2,2,6}, {2,3,5} and {5,5}. So the output should be 5. 

Optimal Substructure 

To count the total number of solutions, we can divide all set solutions into two sets. 

1) Solutions that do not contain mth coin (or Sm). 

2) Solutions that contain at least one Sm. 

Let count(S[], m, n) be the function to count the number of solutions, then it can be written as 

sum of count(S[], m-1, n) and count(S[], m, n-Sm). 

Therefore, the problem has optimal substructure property as the problem can be solved using 

solutions to sub problems. 

http://algorithms.tutorialhorizon.com/introduction-to-dynamic-programming-fibonacci-series/
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2) Overlapping Sub problems 

Following is a simple recursive implementation of the Coin Change problem. The 

implementation simply follows the recursive structure mentioned above. 

int count( int S[], int m, int n )  

{  

    // If n is 0 then there is 1 solution   

    // (do not include any coin)  

    if (n == 0)  

        return 1;  

       

    // If n is less than 0 then no   

    // solution exists  

    if (n < 0)  

        return 0;  

   

    // If there are no coins and n   

    // is greater than 0, then no  

    // solution exist  

    if (m <=0 && n >= 1)  

        return 0;  

   

    // count is sum of solutions (i)   

    // including S[m-1] (ii) excluding S[m-1]  

    return count( S, m - 1, n ) + count( S, m, n-S[m-1] );  

3.5 MULTISTAGE GRAPH 

1. A multistage graph G = (V,E) is a directed graph in which the vertices are portioned 

into K 

> = 2 disjoint sets Vi, 1 <= i<= k. 

2. In addition, if < u,v > is an edge in E, then u < = Vi and V  Vi+1 for some i, 1<= i < 

k. 

3. If there will be only one vertex, then the sets Vi and Vk are such that [Vi]=[Vk] = 1. 

4. Let ‘s’ and ‘t’ be the source and destination respectively. 

5. The cost of a path from source (s) to destination (t) is the sum of the costs of the 

edger on the path. 

6. The MULTISTAGE GRAPH problem is to find a minimum cost path from ‘s’ to ‘t’. 

7. Each set Vi defines a stage in the graph. Every path from ‘s’ to ‘t’ starts in stage-1, 
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goes to stage-2 then to stage-3, then to stage-4, and so on, and terminates in stage-k. 

BACKWARD METHOD 

 
➢ if there one ‘K’ stages in a graph using back ward approach. we will find out the 

cost of each & every vertex starting from 1st
 

stage to the kth stage. 

➢ We will find out the minimum cost path from destination to source (ie)[from 

stage k to stage 1] 

 

PROCEDURE: 

 

1. It is similar to forward approach, but differs only in two or three ways. 

2. Maintain a cost matrix to store the cost of every vertices and a distance matrix to 

store the minimum distance vertex. 

3. Find out the cost of each and every vertex starting from vertex 1 up to vertex k. 

4. To find out the path star from vertex ‘k’, then the distance array D (k) will give the 

minimum cost neighbor vertex which in turn gives the next nearest neighbor vertex 

and proceed till we reach the destination. 

 

STEP: 
 

Cost(1) = 0 => D(1)=0 

Cost(2) = 9 => D(2)=1 

Cost(3) = 7 => D(3)=1 

Cost(4) = 3 => D(4)=1 

Cost(5) = 2 => D(5)=1 

 

Cost(6) =min(c (2,6) + cost(2),c (3,6) + cost(3)) =min(13,9)  

cost(6) = 9 =>D(6)=3 

Cost(7) =min(c (3,7) + cost(3),c (5,7) + cost(5) ,c (2,7) + cost(2)) 

=min(14,13,11) cost(7) = 11 =>D(7)=2 

Cost(8) =min(c (2,8) + cost(2),c (4,8) + cost(4) ,c (5,8) +cost(5)) 

=min(10,14,10) cost(8) = 10 =>D(8)=2 

Cost(9) =min(c (6,9) + cost(6),c (7,9) + cost(7)) 

=min(15,15) cost(9) = 15 =>D(9)=6 

Cost(10)=min(c(6,10)+cost(6),c(7,10)+cost(7)),c(8,10)+cost(8)) 

=min(14,14,15) cost(10)= 14 =>D(10)=6 

 

Cost(11) =min(c (8,11) + cost(8)) cost(11) = 16 =>D(11)=8 

cost(12)=min(c(9,12)+cost(9),c(10,12)+cost(10),c(11,12)+cost(11)) 

=min(19,16,21) cost(12) = 16 =>D(12)=10 

PATH: 
 

Start from vertex-12 D(12) = 10 
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    D(10) = 6 

D(6) = 3 

D(3) = 1 

 

So the minimum cost path is, 

 

1 7 3 2 6 5 10 2 12 
 

The cost is 16. 

 

ALGORITHM : BACKWARD METHOD 

 

Algorithm BGraph (G,k,n,p) 

 

// The I/p is a k-stage graph G=(V,E) with ‘n’ vertex. 

// Indexed in order of stages E is a set of edges. 

// and c[i,J] is the cost of<i,j>,p[1:k] is a minimum cost path. 

{ 

bcost[1]

=0.0; 

for j=2 

to n do 

{ 

//compute bcost[j], 

// let ‘r’ be the vertex such that <r,j> is an edge of ‘G’ & 

// bcost[r]+c[r,j] is minimum. 

 

bcost[j] = bcost[r] + 

c[r,j]; d[j] =r; 

} 

// find a minimum cost path. 
 

P[1]=1; 

P[k]=n; 

For j= k-1 to 2 

do 

P[j]=d[p[j+1]]

; 

3.5 OPTIMAL BINARY SEARCH TREES 

A binary search tree is one of the most important data structures in computer science. 

One of its principal applications is to implement a dictionary, a set of elements with the 

operations of searching, insertion, and deletion. If probabilities of searching for elements of 
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a set are known—e.g., from accumulated data about past searches—it is natural to pose a 

question about an optimal binary search tree for which the average number of comparisons 

in a search is the smallest possible. 

As an example, consider four keys A, B, C, and D to be searched for with probabilities 

0.1, 0.2, 0.4, and 0.3, respectively. Figure 8.7 depicts two out of 14 possible binary search 

trees containing these keys. The average number of comparisons in a successful search in 

the first of these trees is 0.1 . 1+ 0.2 . 2 + 0.4 . 3+ 0.3 . 4 = 2.9, and for the second one it is 

0.1 . 2 + 0.2 . 1+ 

0.4 . 2 + 0.3 . 3= 2.1. Neither of these two trees is, in fact, optimal. 

For our tiny example, we could find the optimal tree by generating all 14 binary 

search trees with these keys. As a general algorithm, this exhaustive-search approach is 

unrealistic: the total number of binary search trees with n keys is equal to the nth Catalan 

number, 

 
To derive a recurrence underlying a dynamic programming algorithm, we will 

consider all possible ways to choose a root ak among the keys ai, . . . , aj . For such a binary 

search tree (Figure 8.8), the root contains key ak, the left subtree T k−1 i contains keys ai, . 

. . , ak−1 optimally arranged, and the right subtree Tj k+1 contains keys ak+1, . . . , aj also 

optimally arranged. 

 

If we count tree levels starting with 1 to make the comparison numbers equal the 

keys’ levels, the following recurrence relation is obtained: 

We assume in formula (8.8) that C(i, i − 1) = 0 for 1≤ i ≤ n + 1, which can be interpreted 

as the number of comparisons in the empty tree. Note that this formula implies that 
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as it should be for a one-node binary search tree containing ai . 
 

 

The two-dimensional table in Figure 8.9 shows the values needed for computing C(i, 

j) by formula they are in row i and the columns to the left of column j and in column j and 

the rows below row i. The arrows point to the pairs of entries whose sums are computed in 

order to find the smallest one to be recorded as the value of C(i, j). This suggests filling the 

table along its diagonals, starting with all zeros on the main diagonal and given probabilities 

pi, 1≤ i ≤ n, right above it and moving toward the upper right corner. 

key A B C D 

probability 0.1 0.2 0.4 0.3 
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ALGORITHM OptimalBST(P [1..n]) 

for i ←1 to n do 

C[i, i − 

1]←0 C[i, 

i]←P[i] 

R[i, i]←i 

C[n + 1, n]←0 

for d ←1 to n − 1 do //diagonal count 

for i ←1 to n − d do 

j ←i 

+ d 

minv

al←

∞ 

for k←i to j do 

if C[i, k − 1]+ C[k + 1, j]< minval 

minval←C[i, k − 1]+ C[k + 1, j]; kmin←k 

R[i, j ]←kmin 

sum←P[i]; for s ←i + 1 to j do sum←sum + P[s] 

C[i, j ]←minval + sum 

return C[1, n], R 

The algorithm’s space efficiency is clearly quadratic; the time efficiency of this version of the 

algorithm is cubic. 

3.6 THE KNAPSACK PROBLEM AND MEMORY FUNCTIONS 

Knapsack problem: given n items of known weights w1, . . . , wn and values v1, . . . , vn 

and a knapsack of capacity W, find the most valuable subset of the items that fit into the 

knapsack. 

To design a dynamic programming algorithm, we need to derive a recurrence relation 

that expresses a solution to an instance of the knapsack problem in terms of solutions to its 

smaller subinstances. Let us consider an instance defined by the first i items, 1≤ i ≤ n, with 

weights w1, . 

. . , wi, values v1, . . . , vi , and knapsack capacity j, 1 ≤ j ≤ W. Let F(i, j) be the value of an 

optimal solution to this instance, i.e., the value of the most valuable subset of the first i items 
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that fit into the knapsack of capacity j.We can divide all the subsets of the first i items that 

fit the knapsack of capacity j into two categories: those that do not include the ith item and 

those that do. Note the following: 

1. Among the subsets that do not include the ith item, the value of an optimal subset is, by 

definition, F(i − 1, j). 

2. Among the subsets that do include the ith item (hence, j – wi ≥ 0), an optimal subset is 

made up of this item and an optimal subset of the first i − 1 items that fits into the knapsack 

of capacity j − wi . The value of such an optimal subset is vi + F(i − 1, j − wi). 

It is convenient to define the initial conditions as follows: 
 

Our goal is to find F(n, W), the maximal value of a subset of the n given items that fit into 

the knapsack of capacity W, and an optimal subset itself. 
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Thus, the maximal value is F(4, 5) = $37. We can find the composition of an optimal 

subset by backtracing the computations of this entry in the table. Since F(4, 5) > F(3, 5), 

item 4 has to be included in an optimal solution along with an optimal subset for filling 5 − 

2 = 3 remaining units of the knapsack capacity. The value of the latter is F(3, 3). Since F(3, 

3) = F(2, 3), item 3 need not be in an optimal subset. Since F(2, 3) > F(1, 3), item 2 is a part 

of an optimal selection, which leaves element F(1, 3 − 1) to specify its remaining 

composition. Similarly, since F(1, 2) > F(0, 2), item 1 is the final part of the optimal solution 

{item 1, item 2, item 4}. The 

time efficiency and space efficiency of this algorithm are both in Θ(nW). 

Memory Functions 

Dynamic programming deals with problems whose solutions satisfy a recurrence 

relation with overlapping subproblems. The direct top-down approach to finding a solution 

to such a recurrence leads to an algorithm that solves common subproblems more than once 

and hence is very inefficient. The classic dynamic programming approach, on the other hand, 

works bottom up: it fills a table with solutions to all smaller subproblems, but each of them 

is solved only once. An unsatisfying aspect of this approach is that solutions to some of these 

smaller subproblems are often not necessary for getting a solution to the problem given. 

Since this drawback is not present in the top-down approach, it is natural to try to combine 

the strengths of the top-down and bottom-up approaches. The goal is to get a method that 

solves only subproblems that are 

necessary and does so only once. Such a method exists; it is based on using memory functions. 

This method solves a given problem in the top-down manner but, in addition, maintains a 

table. ALGORITHM MFKnapsack(i, j ) 

if F[i, j ]< 0 

if j <Weights[i] 

value←MFKnapsack(i − 1, j) 

else 

value←max(MFKnapsack(i − 1, j),Values[i]+ MFKnapsack(i − 1, j 

−Weights[i])) 

F[i, j ]←value 

return F[i, j ] 
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The table in Figure 8.6 gives the results. Only 11 out of 20 nontrivial values (i.e., not those 

in row 0 or in column 0) have been computed. Just one nontrivial entry, V (1, 2), is retrieved 

rather than being recomputed. 

3.7 GREEDY TECHNIQUE 

Change-making problem: give change for a specific amount n with the least number of 

coins of the denominations d1>d2 > . . .>dm used in that locale. 

For example, the widely used coin denominations in the United States are d1 = 25 

(quarter), d2 = 10 (dime), d3 = 5 (nickel), and d4 = 1 (penny). How would you give change 

with coins of these denominations of, say, 48 cents? 

If  you  came  up  with  the  answer  1  quarter,  2  dimes,  and  3  pennies.  ―Greedy‖  

thinking leads to giving one quarter because it reduces the remaining amount the most, 

namely, to 23 cents. In the second step, you had the same coins at your disposal, but you 

could not give a quarter, because it would have violated the problem’s constraints. So your 

best selection in this step was one dime, reducing the remaining amount to 13 cents. Giving 

one more dime left you 

with 3 cents to be given with three pennies. The greedy approach suggests constructing a 

solution through a sequence of steps, each expanding a partially constructed solution 

obtained so far, until a complete solution to the problem is reached. On each step the choice 

made must be: 

• feasible, i.e., it has to satisfy the problem’s constraints 

• locally optimal, i.e., it has to be the best local choice among all feasible choices 

available on that step 

• irrevocable, i.e., once made, it cannot be changed on subsequent steps of the 

algorithm. 

3.7PRIM’S ALGORITHM 

The following problem arises naturally in many practical situations: given n points, 
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connect them in the cheapest possible way so that there will be a path between every pair of 

points. 

A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a 

tree) that contains all the vertices of the graph. If such a graph has weights assigned to its 

edges, a minimum spanning tree is its spanning tree of the smallest weight, where the weight 

of a tree is defined as the sum of the weights on all its edges. The minimum spanning tree 

problem is the problem of finding a minimum spanning tree for a given weighted connected 

graph. 

 

 

Prim’s algorithm constructs a minimum spanning tree through a sequence of 

expanding subtrees. The initial subtree in such a sequence consists of a single vertex selected 

arbitrarily from the set V of the graph’s vertices. On each iteration, the algorithm expands 

the current tree in the greedy manner by simply attaching to it the nearest vertex not in that 

tree. After we  have identified a vertex u* to be added to the tree, we need to perform two 

operations: Move u* from the set V − VT to the set of tree vertices VT. For each remaining 

vertex u in V − VT that is connected to u* by a shorter edge than the u’s current distance 

label, update its labels by u* and the weight of the edge between u* and u, respectively. 
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3.8KRUSKAL’S ALGORITHM 

Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph 

G 
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= {V, E} as an acyclic subgraph with |V| − 1 edges for which the sum of the edge weights is 

the smallest. Consequently, the algorithm constructs a minimum spanning tree as an 

expanding sequence of subgraphs that are always acyclic but are not necessarily connected 

on the intermediate stages of the algorithm. 

The algorithm begins by sorting the graph’s edges in nondecreasing order of their 

weights. Then, starting with the empty subgraph, it scans this sorted list, adding the next 

edge on the list to the current subgraph if such an inclusion doesnot create a cycle and simply 

skipping the edge otherwise. 
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3.9 DIJKSTRA’S ALGORITHM 

Single-source shortest-paths problem: for a given vertex called the source in a 

weighted connected graph, find shortest paths to all its other vertices. The single-source 

shortest-paths problem asks for a family of paths, each leading from the source to a different 

vertex in the graph, though some paths may, of course, have edges in common.  

• There are several well-known algorithms for finding shortest paths, including Floyd’s 

algorithm. Here, we consider the best- known algorithm for the single-source shortest-

paths problem, called Dijkstra’s algorithm. This algorithm is applicable to undirected 

and directed graphs with nonnegative weights only. 

• Dijkstra’s algorithm finds the shortest paths to a graph’s vertices in order of their distance 

from a given source.  

• First, it finds the shortest path from the source to a vertex nearest to it, then to a second 

nearest, and so on. These vertices, the source, and the edges of the shortest paths leading 

to them from the source form a subtree Ti of the given graph. 

• Since all the edge weights are nonnegative, the next vertex nearest to the source can be 

found among the vertices adjacent to the vertices of Ti . The set of vertices adjacent to the 

vertices in Ti can be referred to as ―fringe vertices‖; they are the candidates from which 

Dijkstra’s algorithm selects the next vertex nearest to the source. 

To identify the ith nearest vertex, the algorithm computes, for every fringe vertex u, the sum 

of the distance to the nearest tree vertex v (given by the weight of the edge (v, u)) and the  dv 

of the shortest path from the source to v (previously determined by the algorithm) and then 

selects the vertex with the smallest such sum. 
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ALGORITHM Dijkstra(G, s) 

//Dijkstra’s algorithm for single-source shortest paths 

//Input: A weighted connected graph G = {V, E} with nonnegative weights and its vertex s 

//Output: The length dv of a shortest path from s to v and its penultimate vertex pv 

// for every vertex v in V 

Initialize(Q) //initialize priority queue to empty 

for every vertex v in V 

dv ←∞; pv ←null 

Insert(Q, v, dv) //initialize vertex priority in the priority queue 

ds ←0; Decrease(Q, s, ds) //update priority of s 

with ds VT ← ∅ 

for i ←0 to |V| − 1 do 

u ∗ ←DeleteMin(Q) //delete the minimum priority element 

VT ←VT ∪ {u∗ } 

for every vertex u in V − VT that is adjacent to 

u∗ do if du∗ + w(u∗ , u) < du 

du ←du∗ + w(u∗ , u); pu ←u∗ 

Decrease(Q, u, du) 

The time efficiency of Dijkstra’s algorithm depends on the data structures used for 

implementing the priority queue and for representing an input graph itself. 

The shortest paths (identified by following nonnumeric labels backward from a 

destination vertex in the left column to the source) and their lengths (given by numeric labels 

of the tree vertices) are as follows:  
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From a to b : a − b of length 

3 From a to d : a − b − d of 

length 5 From a to c : a − b − 

c of length 7 

From a to e : a − b − d − e of length 9 

 

3.10 Optimal Merge pattern 

 
Merge a set of sorted files of different length into a single sorted file. We need to find an 

optimal solution, where the resultant file will be generated in minimum time. 

If the number of sorted files are given, there are many ways to merge them into a single sorted 

file. This merge can be performed pair wise. Hence, this type of merging is called as 2-way 

merge patterns. 

Two-way merge patterns can be represented by binary merge trees. Let us consider a set 

of n sorted files {f1, f2, f3, …, fn}. Initially, each element of this is considered as a single node 

binary tree. To find this optimal solution, the following algorithm is used. 

Algorithm: TREE (n)   

for i := 1 to n – 1 do   

   declare new node   

   node.leftchild := least (list)  

   node.rightchild := least (list)  

   node.weight) := ((node.leftchild).weight) + ((node.rightchild).weight)   

   insert (list, node);   

return least (list);  

At the end of this algorithm, the weight of the root node represents the optimal cost. 

Example 

Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number of elements 

respectively. 

If merge operations are performed according to the provided sequence, then 

M1 = merge f1 and f2 => 20 + 30 = 50 

M2 = merge M1 and f3 => 50 + 10 = 60 

M3 = merge M2 and f4 => 60 + 5 = 65 
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M4 = merge M3 and f5 => 65 + 30 = 95 

Hence, the total number of operations is 

50 + 60 + 65 + 95 = 270 

Now, the question arises is there any better solution? 

Sorting the numbers according to their size in an ascending order, we get the following 

sequence − 

f4, f3, f1, f2, f5 

Hence, merge operations can be performed on this sequence 

 

M1 = merge f4 and f3 => 5 + 10 = 15 

M2 = merge M1 and f1 => 15 + 20 = 35 

M3 = merge M2 and f2 => 35 + 30 = 65 

M4 = merge M3 and f5 => 65 + 30 = 95 

Therefore, the total number of operations is 

15 + 35 + 65 + 95 = 210 

Obviously, this is better than the previous one. 

In this context, we are now going to solve the problem using this algorithm. 

Initial Set 

 

Step-1 

 

Step-2 
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Step-3 

 

Step-4 

 

Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of comparisons 

3.11 HUFFMAN TREES AND CODES 

 
Suppose we have to encode a text that comprises symbols from some n-symbol 

alphabet by assigning to each of the text’s symbols some sequence of bits called the 

codeword. For example, we can use a fixed-length encoding that assigns to each symbol a 

bit string of the same length m (m ≥ log2 n). This is exactly what the standard ASCII code 

does. One way of getting a coding scheme that yields a shorter bit string on the average is 

based on the old idea of assigning shorter codewords to more frequent symbols and longer 

codewords to less frequent symbols. 

Variable-length encoding, which assigns codewords of different lengths to different 

symbols, introduces a problem that fixed-length encoding does not have. To avoid this 

complication, we can limit ourselves to the so-called prefix-free (or simply prefix) codes. 

In a prefix code, no codeword is a prefix of a codeword of another symbol. Hence, with such 

an encoding, we can simply scan a bit string until we get the first group of bits that is a 

codeword for some symbol, replace these bits by this symbol, and repeat this operation until 

the bit string’s end is reached. 

If we want to create a binary prefix code for some alphabet, it is natural to associate 

the alphabet’s symbols with leaves of a binary tree in which all the left edges are labeled by 

0 and all the right edges are labeled by 1. The codeword of a symbol can then be obtained 
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by recording the labels on the simple path from the root to the symbol’s leaf. 

Huffman’s algorithm 

Step 1 Initialize n one-node trees and label them with the symbols of the alphabet given. 

Record the frequency of each symbol in its tree’s root to indicate the tree’s weight. 

Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the 

smallest weight (ties can be broken arbitrarily, but see Problem 2 in this section’s exercises). 

Make them the left and right subtree of a new tree and record the sum of their weights in the 

root of the new tree as its weight. A tree constructed by the above algorithm is called a 

Huffman tree. It defines—in the manner described above—a Huffman code. 

EXAMPLE Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence 

frequencies in a text made up of these symbols: 

symbol A B C D _ 

frequency 0.35 0.1 0.2 0.2 0.15 
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Example of constructing a Huffman coding tree. The resulting 

codewords are as follows: 

symbol A B C D _ 

frequency 0.35 0.1 0.2 0.2 0.15 

codeword 11 100 00 01 101 

 
Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD_AD. 

With the occurrence frequencies given and the codeword lengths obtained, the 

average number of bits per symbol in this code is 

2 . 0.35 + 3 . 0.1+ 2 . 0.2 + 2 . 0.2 + 3 . 0.15 = 2.25. 

 


