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UNIT IV MAGNETIC FORCES AND MATERIALS 

 
 : Force On A Moving Charge: 

 

In electric field, force on a charged particle is 

F=QE 

Force is in the same direction as the electric field intensity 

(positive charge) 

 

A charged particle in motion in a magnetic field force magnitude is proportional to the 

product of magnitudes of the charge Q, its velocity V and the flux density B and to the sine 

of the angle between the vectors V and B. 

 

The direction of force is perpendicular to both V and B and is given by a unit vector in the 

direction of V x B. 

 

The force may therefore be expressed as 

F=QV x B 

Force on a moving particle due to combined electric and magnetic fields is obtained by 

superposition. 

 

F=Q (E + V x B) 

 

This equation is known as Lorentz force equation. 

 

 Force On A Differential Current Element: 
 

The force on a charged particle moving through a steady magnetic field may be written as 

the differential; force exerted on a differential element of charge. 

 

dF dQ 

 

Convection current density in terms of the velocity of the volume charge density 

Differential element of charge may also be expressed in terms of volume charge density. 

dQ v dv 

Thus,  
dF v dvVxB 
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JdV is the differential current element 

dF 
JxBdv 

 

Jdv Kds IdL 

 

Lorentz force equation may be applied to surface current density. 

 
dF 

KxBds 

 

Differential current element 

 

dF IdLxB 

 

Integrating the above equations over a volume, surface open or closed 
 

F 
vol 

JxBdv 

 

F 

KxBds 
s 

To a straight conductor in a uniform magnetic field 

 
F= IdLxB 

 
I BxdL 

 
F ILxB 

The magnitude of the force is given by the familiar equation 

 

F=BILsin 
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Force on a current-carrying conductor 
 

Charges confined to wires can also experience a force in a magnetic field. A current (I) in a 

magnetic field ( B) experiences a force ( F) given by the equation F = I l × B or F = IlB sin θ, 

where l is the length of the wire, represented by a vector pointing in the direction of the 

current. The direction of the force may be found by a right‐hand rule similar to the one shown 

in Figure . In this case, point your thumb in the direction of the current—the direction of 

motion of positive charges. The current will experience no force if it is parallel to the magnetic 

field. 

 Force and Torque on a current loop 

A loop of current in a magnetic field can experience a torque if it is free to turn. Figure (a) 

depicts a square loop of wire in a magnetic field directed to the right. Imagine in Figure (b) that 

the axis of the wire is turned to an angle (θ) with the magnetic field and that the view is looking 

down on the top of the loop. The x in a circle depicts the current traveling into the page away 

from the viewer, and the dot in a circle depicts the current out of the page toward the viewer. 
 

Figure 4.1 

(a) Square current loop in a magnetic field B. (b) View from the top of the current loop. (c) If 

the loop is tilted with respect to B, a torque results. 

 

 MAGNETIC MATERIALS: 

All material shows some magnetic effects. In many substances the effects are so weak that 

the materials are often considered to be non magnetic. 

 

A vacuum is the truly nonmagnetic medium. 

 

Material can be classified according to their magnetic behavior into 

v Diamagnetic 

v Paramagnetic 

v Ferromagnetic 

 

DIAMAGNETIC: 

In diamagnetic materials magnetic effects are weak. Atoms in which the small magnetic 

fields produced by the 

motion of the electrons in their orbit  and  those  produced 

by the electron spin combine to produce a net field of zero. 
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The fields produced by the electron motion itself in the absence of any external magnetic 

field. 

 

This material as one in which the permanent magnetic moment m0 of each atom is zero. 

Such a material is termed diamagnetic. 

 

PARAMAGNETIC: 

 

In paramagnetic materials the magnetic moments of adjacent atoms align in opposite 

directions so that the net magnetic moment of a specimen is nil even in the presence of 

applied field. 

 

FERROMAGNETIC: 

 

In ferromagnetic substance the magnetic moments of adjacent atoms are also aligned 

opposite, but the moments are not equal, so there is a net magnetic moment. 

 

It is less than in ferromagnetic materials. 

 

The ferrites have a low electrical conductivity, which makes them useful in the cores of ac 

inductors and transformers. 

 

Since induced currents are less and ohmic losses are reduced. 

 
 

 BOUNDARY CONDITIONS: 

 

A boundary between two isotropic homogeneous linear 

materials with permeability  1 and 2. 

The boundary condition on the normal components is determined by allowing the surface to 

cut a small cylindrical gaussian surface. 

 

Applying gauss' s law for the magnetic field. 
 

 

 
We find that 

B.ds 0 

s 

 

BN 1 S BN 2 S 0 

 
BN 1 BN 2 

 

  1 HN 

2 1 

HN 2 
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The normal component of B is continuous, but the normal component 
of H is discontinuous  by the ratio 

  1
 

. 
2 
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The relationship between the normal components of M,is fixed once the relationship between 

the normal components of H is known . 

 

For linear magnetic materials, the result is written simply as 

M N 2 

Next, Ampere' s circuital law 

 
H .dL I 

 
Is applied about a small closed path in a plane normal to the boundary surface. 

Taking trip around the path, we find that 

Ht1 L Ht 2 L K  L 

Boundary may carry a surface current K whose component normal to the plane of the closed 

path is K.Thus 
 

Ht1 Ht 2 K 

The direction are specified more exactly by using the cross product to identify the tangential 

components, 
 

( H1 H 2 ) xaN 12 K 

Where aN12 is the normal at the boundary directed from region 1 to region 2. 

 

An equivalent formulation in term of the vector tangential components may be more 

convenient for H: 
 

Ht1 Ht 

2 

K x aN 12 

 

For tangential B, we have 

 

 

 

 
 INDUCTANCE: 

 

 
Bt1 

1 

 
Bt 2 K 

2 

self inductance and mutual inductance: 

Like  capacitance,  inductance  L  is a  property  of a physical  arrangement   of conduc- tors. 

It is a measure of magnetic flux which links the circuit  when  a  current  I flows in  the  

circuit. It is also a measure of how much energy is stored in  the magnetic  field  of an 

inductor, such as a coil, solenoid, etc. 

The definition of inductance rests on the concept of flux linkage.  It is not  a very 

precise concept unless one is willing to introduce  a complicated  topological description. 

For  our  purposes  it  will be  sufficient to  define flux   linkage   A as  the flux that  links  all 

JIT 80 Dept of EEE 
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the circuit, multiplied by the number of turns N. For example, in the case of the 

solenoid shown in Fig. , flux linkage will be given by 
 

Fig 4.2 solenoid flux linkage 

A  = N¢  = N  JJ B·   dA ~ NBA Wb 

 
that  is,  only  the  flux  that  goes  through  the  inside  of  the  solenoid   and  therefore links 

all turns is used.  The  small  flux  loops  about  each  turn  are  ignored  in  a first-order 

analysis because they link  only  one  or  two  turns  and  flow  through  a small  area.  The  

area  A  is  that  area  through  which  the  flux  that   links   all  turns flows. For  the  solenoid 

of Fig. 7.7, a good approximation to A is the cross section of the solenoid 

 

The unit of inductance is  the  henry  (H).  Inductors  for  filter  applications  in  power  

supplies are usually wire-wound solenoids on an iron core  with  inductances  in  the range 

from  1  to  10  H.  Inductors   found   in   high-frequency   circuits   are   air-core solenoids 

with values in the millihenry (mH) range. The  definition  for  inductance,  (7.28),  even  

though it is derived for steady currents, is valid up to very high frequencies. 

Let us calculate L for some useful geometries. 

 
 Solenoid 

A good approximation of the B field in a solenoid that links all turns is the  B field at  the 

center of  the  solenoid;  that  is,  B  =  J10 Ni]l  from  (7.22)  or  (6.40).  There  is some 

leakage at  the  ends  of the  solenoid  (recall  that  the  value  of the  B field drops to  one-half 

at the ends), which  we will ignore  because  it occurs  mainly  at the ends. The  inductance  L 

of a solenoid is therefore 

 

L= A = NBA    =  J1oN2A 

 

where I is the length and A is the cross section of the solenoid. 

If we have a short solenoid of N turns, that is, one where the length I is smaller 
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TOROID 

For  example,  the  inductance  of  a  2000-turn   toroid   having  a  cross-sectional area  of 

1 em? and mean radius of 5 em is 

L = (4n x 10-7 H/m)(2000)2(10-4 m2)/2n(O.05 m) = 1.6 mH 

If the toroid were filled with iron instead of air, the inductance could be increased many 

thousand fold. 

Note that we have neglected  the  variation  of B across  the  cross  section  of the toroid. 
By using an average r, as, for example, r = (a + b)/2,  we have  in  effect used an  average 
value of B in the calculation  of  inductance.  If this  is  not  sufficiently  accurate,  the 
variation of B should be considered by integrating (7.25) between a and b. 

 

 Coaxial Transmission Line 

The student usually does not have any difficulty in grasping the concept ofinduc- tance  as  

long as the geometries involve windings (such as in coils and toroids). In the following 

examples flux linkage is used in a broader sense and should clarify that  concept  further. 

Figure 7.8 shows a longitudinal and transverse cross section of a coaxial line (already 

considered  in  Sec.  5.5  when  the  capacitance'  per  unit  length  was  calculated).  The 

current I flows in the center conductor and returns 

The inductance per unit length L/Z is 

-  = -   = -In - Him 
L A 11

(
0
7.34) Z

b
 IZ 2n a 

For an   air-filled coaxial line   the above expression can be  written as LIZ = 
0.2  In (bla)  microhenrys per meter (I1H/m). 

We  have  ignored  the  contribution  of the  magnetic field inside the inner con- 

ductor for  several   reasons.  t First,   as  shown   in  Fig.  7.4, the  magnetic   flux within 

the  inner  conductor (assuming  the  current  I is distributed  uniformly   throughout 

the  cross  section of  the  inner   conductor, which   is  a valid  assumption  for direct 

current   and   for  current at  low  frequencies)   links   only   a  fraction   of  that con- 

ductor;  that   fraction  is proportional to (rlaf   because  Iatr = (rla)2I.  Second, at the 

higher  frequencies  the  current   is effectively   confined   to  a  thin   layer   (skin  depth)   at 

r  = a  for  the  inner   conductor and   at   r  = b  for the  outer.   Third, most  practical 

transmission lines  use  a small inner  conductor   and  a thin-walled outer conductor. 

Hence   the  flux  linkages   within   the  conductors can  be neglected, and (7.34) is an 

accurate expression for inductance per unit length. 

Fig: 4.3 coxial transmission-cross section 
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We have approximated the upper  limit  d -  a  by  d because  for  practical  transmis- sion  

lines d ~ a. This approximation  also  accounts  for  the  flux  from  the  lower conductor  

which partly links the current  inside  the  upper  wire. As a matter  of fact it can  be shown  

that the replacement of d - a by a gives an exact result  for  the  flux  linkages. t  The 

inductance per unit length LII. 

which  is  the  desired  result  and  gives  the  total  stored  magnetic   energy   in   an 

inductance L carrying current I. For example, a solenoid with an inductance of 

8 H and a current of -!- A has an energy stored of W = -!-LI2 = 1 J. 
 

 

 

Inductor 
 

 

 

 

 
Fig:4.4 
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4.8 ENERGY STORED INA MAGNETIC FIELD: 
 

 

 

 

 

 

 

Fig:4.5  
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UNIT V TIME VARYING FIELDS AND MAXWELL’S EQUATIONS 

 

Introduction: 
 

In our study of static fields so far, we have observed that static electric fields are produced 
by electric charges, static magnetic fields are produced by charges in motion or by steady 
current. Further, static electric field is a conservative field and has no curl, the static 
magnetic field is continuous and its divergence is zero. The fundamental relationships for 
static electric fields among the field quantities can be summarized as: 

 
(5.1a) 

 

 

For a linear and isotropic medium, 
 

 

Similarly for the magnetostatic case 

 

 

 

 

(5.1b) 

 

 

(5.1c) 

 

 
 

(5.2a) 

 
(5.2b) 

 
(5.2c) 

 

It can be seen that for static case, the electric field vectors and and magnetic field 

vectors and form separate pairs. 

In this chapter we will consider the time varying JITnario. In the time varying case we 

will observe that a changing magnetic field will produce a changing electric field and 

vice versa. 

 

We begin our discussion with Faraday's Law of electromagnetic induction and then 

present the Maxwell's equations which form the foundation for the electromagnetic 

theory. 

 

 Faraday's Law of electromagnetic Induction 

 
Michael Faraday, in 1831 discovered experimentally that a current was induced in a 

conducting loop when the magnetic flux linking the loop changed. In terms of fields, we 

can say that a time varying magnetic field produces an electromotive force (emf) which 

causes a current in a closed circuit. The quantitative relation between the induced emf 

(the voltage that arises from conductors moving in a magnetic field or from changing 

magnetic fields) and the rate of change of flux linkage developed based on experimental 

observation is known as Faraday's law. Mathematically, the induced emf can be written 

as 
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Emf = Volts (5.3) 

 
where is the flux linkage over the closed path. 

 

A non zero may result due to any of the following: (a) time changing flux linkage a 

stationary closed path. 

(b) relative motion between a steady flux a closed path. 

 
(c) a combination of the above two cases. 

 
The negative sign in equation (5.3) was introduced by Lenz in order to comply with the 

polarity of the induced emf. The negative sign implies that the induced emf will cause a 

current flow in the closed loop in such a direction so as to oppose the change in the 

linking magnetic flux which produces it. (It may be noted that as far as the induced emf 

is concerned, the closed path forming a loop does not necessarily have to be 

conductive). 

 
If the closed path is in the form of N tightly wound turns of a coil, the change in the 
magnetic flux linking the coil induces an emf in each turn of the coil and total emf is the 
sum of the induced emfs of the individual turns, i.e., 

 

 
Emf = Volts (5.4) 

By defining the total flux linkage as 

 

(5.5) 

The emf can be written as 

 
 

 

Emf = (5.6) 

 

Continuing with equation (5.3), over a closed contour 'C' we can 

write 

 

Emf =                                  (5.7) 
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where is the induced electric field on the conductor to sustain the 

current. Further, total flux enclosed by the contour 'C ' is given by 

 
(5.8) 

 

Where S is the surface for which 'C' is the contour. 

From (5.7) and using (5.8) in (5.3) we can write 

 

 

By applying stokes theorem 

 

Therefore, we can write 

 

 

(5.9) 

 

 

 
 

(5.10) 

 

 

 
 

(5.11) 
 

which is the Faraday's law in the point form 

 

We have said that non zero can be produced in a several ways. One particular case is 

when a time varying flux linking a stationary closed path induces an emf. The emf 
induced in a stationary closed path by a time varying magnetic field is called a 

transformer emf . 

 

 Ideal transformers 

 

As shown in figure 5.1, a transformer consists of two or more numbers of coils coupled 

magnetically through a common core. Let us consider an ideal transformer whose 

winding has zero resistance, the core having infinite permittivity and magnetic losses 

are zero. 
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Fig 5.1: Transformer with secondary open 

 
These assumptions ensure that the magnetization current under no load condition is 
vanishingly small and can be ignored. Further, all time varying flux produced by the 

primary winding will follow the magnetic path inside the core and link to the secondary 
coil without any leakage. If N1 and N2 are the number of turns in the primary and the 

secondary windings respectively, the induced emfs are 
 

 

(5.12a) 
 

(5.12b) 

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at 
the dotted end of the winding.) 

 

(5.13) 

 
i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their 
turns. Under ideal condition, the induced emf in either winding is equal to their voltage 
rating. 

 
 

(5.14) 

 

where 'a' is the transformation ratio. When the secondary winding is connected to a load, 

the current flows in the secondary, which produces a flux opposing the original flux. The 

net flux in the core decreases and induced emf will tend to decrease from the no load 

value. This causes the primary current to increase to nullify the decrease in the flux and 

induced emf. 
The current continues to increase till the flux in the core and the induced emfs are restored 
to the no load values. Thus the source supplies power to the primary winding and the 
secondary winding delivers the power to the load. Equating the powers 
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(5.15) 

 

(5.16) 
 

Further, 

 

(5.17) 
 

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under 

ideal condition. 

 

 Motional EMF: 

 

Let us consider a conductor moving in a steady magnetic field as shown in the fig 5.2. 
 
 

 

Fig 5.2 

 
If a charge Q moves in a magnetic field , it experiences a force 

 

(5.18) 

 

This force will cause the electrons in the conductor to drift towards one end and leave 

the other end positively charged, thus creating a field and charge separation 

continuous until electric and magnetic forces balance and an equilibrium is reached 

very quickly, the net force on the moving conductor is zero. 
 

 

field 
can be interpreted as an induced electric field which is called the motional electric 

 

 
(5.19) 
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If the moving conductor is a part of the closed circuit C, the generated emf around the 

circuit is . This emf is called the motional emf. 

 

 Maxwell's Equation 

Equation (5.1) and (5.2) gives the relationship among the field quantities in the static 

field. For time varying case, the relationship among the field vectors written as 

 

 
(5.20a) 

(5.20b) 

 
(5.20c) 

 
(5.20d) 

In addition, from the principle of conservation of charges we get the equation of continuity 

 

 
(5.21) 

The equation 5.20 (a) - (d) must be consistent with equation 
 

(5.21). We observe that 

 
(5.22) 

 
Since is zero for any vector . 
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Thus applies only for the static case i.e., for the JITnario when 
. A classic example for this is given below . 

 

Suppose we are in the process of charging up a capacitor as shown in fig 5.3. 
 

Fig 5.3 process of charging up a capacitor 

 
Let us apply the Ampere's Law for the Amperian loop shown in fig 5.3. Ienc = I is the 

total current passing through the loop. But if we draw a baloon shaped surface as in fig 
5.3, no current passes through this surface and hence Ienc = 0. But for non steady 

currents such as this one, the concept of current enclosed by a loop is ill-defined since it 

depends on what surface you use. In fact Ampere's Law should also hold true for time 
varying case as well, then comes the idea of displacement current which will be 
introduced in the next few slides. 

 

We can write for time varying case, 

 

 

 
(5.23) 

 

 
(5.24) 

 

The equation (5.24) is valid for static as well as for time varying case. 
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Equation (5.24) indicates that a time varying electric field will give rise to a magnetic 

 

field  even  in  the absence of . The term has a dimension of current densities 

and is called the displacement current density. 

 

 

Introduction of in equation is one of the major contributions of Jame's Clerk 
Maxwell. The modified set of equations 

 

 

 

(5.25b) 
 

(5.25c) 

 
(5.25d) 

 

is known as the Maxwell's equation and this set of equations apply in the time 
 

varying JITnario, static fields are being a particular case . 
 

In the integral form 
 

 

 
 

 
 

 

 

                                       (5.26d) 

(5.26a) 

 

 

(5.26b) 

 

 
(5.26c) 
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The modification of Ampere's law by Maxwell has led to the development of a 

unified electromagnetic field theory. By introducing the displacement current term, 

Maxwell could predict the propagation of EM waves. Existence of EM waves was 

later demonstrated by Hertz experimentally which led to the new era of radio 

communication. 

 

 Boundary Conditions for Electromagnetic fields 

 

The differential forms of Maxwell's equations are used to solve for the field v ectors 

provided the field quantities are single valued, bounded and continuous. At the media 

boundaries, the field vectors are discontinuous and their behaviors across the boundaries 

are governed by boundary conditions. 

The integral equations(eqn 5.26) are assumed to hold for regions containing 

discontinuous media.Boundary conditions can be derived by applying the Maxwell's 

equations in the integral form to small regions at the interface of the two media. The 

procedure is similar to those used for obtaining boundary conditions for static electric 

fields (chapter 2) and static magnetic fields (chapter 4). The boundary conditions are 

summarized as follows 
 

With reference to fig 5.3 

 

 

 

 

 
Fig 

5.4 

Equation 5.27 (a) says that tangential component of electric field is continuous across 

the interface while from 5.27 (c) we note that tangential component of the magnetic 

field is discontinuous by an amount equal to the surface current density. Similarly 5.27 

(b) states that normal component of electric flux  density vector  is  discontinuous  

across the interface by an amount equal to the surface current density while normal 

component of the magnetic flux density is continuous. 


