
JEPPIAAR INSTITUTE OF TECHNOLOGY

“Self-Belief | Self Discipline | Self Respect”

DEPARTMENT

OF

COMPUTER SCIENCE AND ENGINEERING

LECTURE NOTES

IT8076 – SOFTWARE TESTING

(Regulation 2017)

Year/Semester: III/VI CSE

2020 – 2021

Prepared by

Ms. R. Revathi

Assistant Professor/CSE

 2020-2021 Jeppiaar Institute of Technology

UNIT II TEST CASE DESIGN

Test case Design Strategies – Using Black Box Approach to Test Case Design –

Boundary Value Analysis – Equivalence Class Partitioning – State based testing

– Cause-effect graphing – Compatibility testing – user documentation testing –

domain testing - Random Testing – Requirements based testing – Using White

Box Approach to Test design – Test Adequacy Criteria – static testing vs.

structural testing – code functional testing – Coverage and Control Flow Graphs

–Covering Code Logic – Paths – code complexity testing – Additional White box

testing approaches Evaluating Test Adequacy Criteria.

TEST CASE DESIGN STRATEGIES

Develop effective test cases for execution based testing.

positive consequences of effective test cases

• A greater probability of detecting defects

• A more efficient use of organizational resources

• A higher probability for test reuse

• Closer adherence to testing and project schedules and budgets

• The possibility for delivery of higher quality software products

The two basic testing strategies

Test Strategy & Tester’s View Knowledge Sources Methods

Black Box

Requirements

Documents

Specification

Domain

Knowledge

Defect Analysis

Data

Equivalence class

Partitioning

Boundary value analysis

State transition

testing

Cause and Effect

Graphing

Error guessing

White Box

High level Design

Detailed Design

Control Flow

Graphs

Cyclomatic

Complexity

Statement Testing

Branch Testing

Path Testing

Data Flow testing

Mutation Testing

Loop Testing

Black Box Testing

• size of the software -> simple module, member function, or object cluster to a

subsystem or a complete software system.The description behavior or

functionality for the software under test may come from a formal specification

1

 2020-2021 Jeppiaar Institute of Technology

an input/ process output diagram (IP0), or well defined set of pre and post

conditions.

• Because the black box approach only considers software behavior and

functionality, it is often called functional or specification based testing.

• This approach is useful for revealing requirements and specification defects.

White Box Approach

• Since designing, executing and analyzing the results of white box testing is very

time consuming, this strategy is usually applied to smaller sized pieces of

software such as module or member function .

• White box testing methods are especially useful for revealing design and code

based control, logic and sequence defects, initialization defects and data flow

defects.

Using the Black Box Approach to Test Case Design:-

1)Equivalence Class Partitioning:-

Partition the input domain of the software into valid and invalid classes. Invalid

classes represent erroneous or unexpected inputs.

Advantage:-

exhaustive testing - eliminated

selecting a subset of test inputs with a high probability of detecting a defect

cover a larger domain of inputs/outputs with a smaller subset selected from an

equivalence class.

Guidelines

Input Conditions no of equivalent
classes

EXAMPLE

range of
values

one valid &
two invalid

classes

Eg: range of 1-499
Valid -> all values from 1-99

Invalid -> values < 1
Invalid values > 499

specific

value

one valid &

two invalid

classes

Eg:- If the specification for a

Product code(3115) ,
Valid -> valid Product code {3115}
Invalid -> valid Product code<3115
Invalid valid Product code>3115

Members

of a set

one valid &
one invalid

classes

eg:- paint module states that the
Color RED, BLUE, GREEN and

YELLOW are allowed as inputs

Valid -> RED
Invalid -> BLACK

must be

condition

(Boolean)

one valid &

one invalid

classes

Eg:- if a specification for a module

states that the first character of a

part identifier must be a letter

Valid -> TOTAL
Invalid -> 3PI

If the input specification in an equivalence class is not handled in an
identical way by the software under test, then the class should be further
partitioned into smaller equivalence classes

2

 2020-2021 Jeppiaar Institute of Technology

Example: A specification of a square root function.

Function square_root

message (x:real)

when x >0.0

reply (y:real)
where y >0.0 & approximately (y*y,x)

otherwise reply exception imaginary_square_root
end function

input: x (4)

output : y (2) Square root of x

I) Test Condition Relevant to Input Conditions:
1) The input conditions variable x must be a real number and be

equal to or greater than 0.0.

2) The output conditions y must be a real number equal to or greater

than 0.0, whose square is approximately equal to x.

II) Generate equivalence classes

EC1. The input variable x is real, valid.

EC2. The input variable x is not real, invalid.

EC3. The value of x is greater than 0.0, valid.
EC4. The value of x is less than 0.0, invalid.

III) equivalence class reporting Table (EC table)

Condition Valid EC Invalid EC

1 EC1 , EC3 EC2 , EC4

IV) Summary of Test I/ps using EC Partitioning
Test case Id i/p Valid EC Invalid EC

TC1 -3 - EC4

TC2 4.0 EC1,EC3 -

TC3 AB - EC2

TC4 -6.2 - EC4

Provide testcases for all ECs present in EC table

2) Boundary Value Analysis :

The test cases developed based on equivalence class partitioning can be

strengthened by use of an another technique called boundary value analysis.

boundary value analysis requires that the tester select elements close to the

edges, so that both the upper and lower edges of an equivalence class are

covered by test cases.

3

 2020-2021 Jeppiaar Institute of Technology

Guidelines

Input
Conditions

Valid & Invalid Test Case EXAMPLE

range of values valid test cases ends of
the range,

invalid test cases above

and below the end of the
range.

Eg: range between -1.0 and +1.0

input values of -1.0, -1.1, and 1.0,
1.1.

number

of values

valid test cases min &

Max Numbers

Invalid Test Case Min-1
, max+1 numbers

Ex: house can have one to four

owners

0,1 owners and 4,5 owners

ordered set, focus on the first and

last elements of the set.

i/p: {25,27,28}
last element 27,28,29
first element 24,25,26

Example1:

The input specification for the module states that a widget identifier should consist of 3–

15 alphanumeric characters of which the first two must be letters.

I) conditions that apply to the input:

(i) it must consist of alphanumeric characters,

(ii) the range for the total number of characters is between 3 and 15, and,
(iii) the first two characters must be letters.

II) Generate bounds groups
BLB—a value just below the lower bound

LB—the value on the lower boundary ALB—

a value just above the lower boundary
BUB—a value just below the upper bound

UB—the value on the upper bound

AUB—a value just above the upper bound

For our example module the values for the bounds groups are:

BLB—2 BUB—14

LB— 3 UB— 15
ALB—4 AUB—16

Generate Equivalent Classes
Condition1:

EC1. Part name is alphanumeric, valid.

EC2. Part name is not alphanumeric, invalid.

4

 2020-2021 Jeppiaar Institute of Technology

Condition2:
EC3. The widget identifier has between 3 and 15 characters, valid.

EC4. The widget identifier has less than 3 characters, invalid.

EC5. The widget identifier has greater than 15 characters, invalid.

Condition3:

EC6. The first 2 characters are letters, valid.

EC7. The first 2 characters are not letters, invalid.

III) Equivalence class reporting table.

IV) Summary of Test Inputs using equivalence class & BVA

Provide testcases for all ECs present in EC table and bound groups.

Example 2: Pin number input of ATM SYSTEM

Case Study : Apply ECP & BVA for pinno of ATM System

Example:

The Pinno input has following specification

I) Derive Input conditions

a) Only digits for pin no input

b) Values range from 0000 to 9999 (Length is 4)

5

 2020-2021 Jeppiaar Institute of Technology

II) Generate bounds groups

For our example module the values for the bounds groups are:

BLB— -1 BUB— 9998

LB— 0 UB— 9999

ALB—1 AUB— 10000

Generate Equivalent Classes

Condition1:

EC1.pinno i/p - only digits, valid.

EC2. pinno i/p with digits and other symbols , invalid.

Condition2:

EC3. The pinno i/p has value between 0000 and 9999 , valid.

EC4. The pinno i/p has value < 0000, invalid.

EC5. The pinno i/p has value > 9999, invalid.

III) Equivalane Class Report

i/p condition valid EC Invalid EC

1 EC1 EC2

2 EC3 EC4, EC5

IV) Summary of test i/ps

Test
Case ID

Input Values Valid EC & Bounds
Covered

InValid EC &
Bounds Covered

1. 9999 EC1 , EC3(UB) -

2. 9998 EC1 , EC3(BUB) -

3. 0000 EC1 , EC3(LB) -

4. 0001 EC1 , EC3(ALB) -

5. W236 - EC2

6. -875 - EC2 , EC4(BLB)

7. 10000 EC1 EC5(AUB)

3) State based Testing

Graph based testing methods are applicable to generate test cases for state machines

such as language translators , work flows , transaction flows and data flows.

It is useful in

o product is language processor

o work flow modeling

o dataflow modeling

Example: validate number using simple rules (for language processor)

1. number start with an optional sign

2. sign can be followed by nay number of digits

3. digits can be optionally followed by a decimal point, represented by a period

4. if there is a decimal point , then there should be 2 digit after decimal

5. Any Number – whether or not it has a decimal point, should be terminated by

a blank.

6

 2020-2021 Jeppiaar Institute of Technology

An example of a state transition diagram.

State transition table

Current
state

Input Next
State

1 Digit 2

1 + 2

1 - 2

2 Digit 2

2 Blank 6

2 decimal
point

3

3 Digit 4

4 Digit 5

5 Blank 6

the above state transition table can be used to derive test cases to test valid and

invalid numbers

1. Start the start state (state #1)

2. Choose the path that leads to the next state (ex: +/-/digit)

3. Invalid i/p in a given state, generate an error condition TC

4. Repeat the process till u reach the final state

A general outline for using state based testing methods with respect to

language processors is

1. Identify the grammar for the scenario. In the above example, we have

represented the diagram as a state machine. In some cases, the scenario can be

a context-free grammar, which may require a more sophisticated representation

of a "state diagram."

2. Design test cases corresponding to each valid state-input combination.

3. Design test cases corresponding to the most common invalid combinations of

state-input.

Ex2 : Leave application by an employee (for work flow modeling)

7

 2020-2021 Jeppiaar Institute of Technology

4) Cause effect Graphing

• Equivalence class partitioning does not allow testers to combine conditions .

• It is a dynamic test case writing technique.

• Cause and effect graphing is technique that can be used to combine conditions

and derive an effective set of test cases that may inconsistencies in a

specifications

• It restates the requirements specification in terms of logical relationship

between the input and output conditions. Since it is logical, it is obvious to use

Boolean operators like AND, OR and NOT.

Steps:

1. The tester must decompose the specification of a complex software component
into lower level units

2. Identify causes and effects

Cause - distinct i/p condition or an equivalence class of i/p conditions.
Effect - an output condition or a system transformation

3. From the cause and effect information, a Boolean cause and Effect graph is

created.
Graph : Node causes(Left Side) and effects (Right side). logical operators
such as AND, OR and NOT and are associated with the arcs.

Notations for constructing cause and Effect graph

4. The graph may be annotated with constraints that describes combinations of
causes and/or effects that are not possible due to environmental or syntactic

constraints

5. Convert the graph into a decision table.

6. The columns in the decision table are transformed into test cases.

Example: module that allows user to perform a search for a character in an

existing string.
Step1 : decompose the specification

Input length of the string

character to search for.
8

http://www.softwaretestinghelp.com/how-to-write-effective-test-cases-test-cases-procedures-and-definitions/

 2020-2021 Jeppiaar Institute of Technology

Output Char position
NOT FOUND
out of range

Step2 : Identify causes and effects

C1 : Positive integer from 1 to 80

C2 : Character to search for is in String

E1 : Integer out of range

E2 : Position of character in string
E3 : Character not found.

Rules or relationship :-

If C1 and C2, then E2.

If C1 and Not C2, then E3
If not C1, then E1.

Step 3: Construct cause and Effect graph & E1

Step: 4 Graph annotated with constraints

C1

E2

C2

E3

Step 5: Convert the graph into a decision table(1- true , 0-false , - don’t care)

 T1 T2 T3

C1 1 1 0

C2 1 0 -

E1 0 0 1

E2 1 0 0

E3 0 1 0

Step6 : Decision table are transformed into test cases

Columns are changed into testcases

Existing string “abcde”

Test Cases Length Character to search
for

Outputs

T1 5 C 3

T2 5 w Not Found

T3 90 Integer out of

range

5) Compatibility testing

It ensures the working of the product with different infrastructure components

(Non-functional testing).

test case results depend on infrastructure for delivering functionality

9

 2020-2021 Jeppiaar Institute of Technology

infrastructure parameter are changed , product is expected to still behave

correctly and produce desired results.

infrastructure parameter H/W , S/W , other components

Example

Test the application in same browsers but in different versions. For e.g. to

test the compatibility of site ebay.com. Download different versions of Firefox

and install them one by one and test the ebay site. Ebay site should behave

equally same in each version.

Test the application in different browsers but in different versions. For e.g.

testing of site ebay.com in different available browsers like Firefox, Safari,

Chrome, Internet Explorer and Opera etc.

Parameters:

Processor (Pentium III / IV, Xenon, SPARC)

Architecture(32 bit / 64 bit)

Resource Availability (RAM & Hard disk space)

Equipment (printer , Modem, Router).

Operating System

Middle-tier infrastructure components (Web Server, App server)

Back end components (Oracle, MS SQL)

Any s/w used to generate product binaries (compiler, linker)

Technological components (SDK, JDK)

Compatibility matrix :

Each row represents a unique combination of a specific set of values of the

parameter

Ex: Mail App

Server App Server Web
Server

Client Browser MS Office Mail
Server

Windows

2000

Microsoft

SQL server

2000

Windows

2000

Advanced

server with

SP$ and

.Net

framework
1.1

IIS5.0 Win2K

Professional

IE 6.0 Office 2k
& Office

XP

Exchange
5.5 & 2K

 ….

Common Techniques

Horizontal Combination(HC): Parameters of the row grouped together for

executing the test cases

Intelligent Sampling:

In HC each feature of the product has to be tested with each row

in the compatibility matrix involves time & effort

Various permutation and combination methods used

Selection of intelligent sampling based on

10

 2020-2021 Jeppiaar Institute of Technology

Information collected on the set of dependencies of the

product with parameter.

Less dependent removed from the list

Can include parameters that are part of product

Types:

Backward compatibility Testing is to verify the behavior of the developed

hardware/software with the older versions of the hardware/software. The

product parameters required for backward compatibility is added to the

compatibility matrix and are tested.

Forward compatibility Testing is to verify the behavior of the developed

hardware/software with the newer versions of the hardware/software.

Tools for compatibility testing:

Adobe Browser Lab - Browser Compatibility Testing

Secure Platform - Hardware Compatibility tool

Virtual Desktops - Operating System Compatibility

6) User documentation testing:

User documentation testing Is done to ensure the documentation matches the

product and vice versa.

User Documentation includes

Manuals user guides installation guides setup guides

online help read me files software release notes

Objective

To check if what is stated in the document is available in the product

To check if what is there in the product is explained correctly in the

document.

Product upgraded documentation upgraded

Lack of coordination documentation group & testing /development group

sitting in front of the system & verifying screen by screen , transaction by

transaction , report by report

checks language aspects (spell check & grammar)

Advantages

Aids in highlighting problems overlooked during reviews

High quality documentation minimizes defect reported by the customer

Results in less difficult support calls

New Programmer & testers can use doc. to learn the external functionality of the

product

Customer need less training & can proceed more quickly to the advanced

training

The effort & money spent on this would form a valuable investment in the long

run for the organization.

11

 2020-2021 Jeppiaar Institute of Technology

7) Domain Testing :

Testing the product purely based on domain knowledge & expertise in the

domain of application

Requires business domain knowledge, Extension of black box testing

When to apply domain testing?

o Ability to design and execute test cases that relate to the people who will buy

and use the software.

o Concerned about everything in the business flow

o Testing the product , not by going through the logic built into the product.

o Business flow determines the steps, not the software under test “ Business

Vertical Testing”

o To Test the software for “Domain Intelligence” , tester is expected to have

intelligence & knowledge of business flow

o Earlier phases of Black box Testing deals with Equivalent Class Partitioning

,Decision Table (Cause Effect Graphing)

o Domain testing is done all components are integrated and product has been

tested using black box approaches.

Ex: Cash Withdrawal of ATM system

Step1 :Go to the ATM

Step2 : Put ATM card inside

Step3 : Enter Correct PIN

Step4 : Choose cash withdrawal

Step5 : Take the cash

Step6 : Exit and retrieve the card

Other Black Box testing Required denomination is available to dispense the

requested amount

Domain Testing Whether user has got the right amount / not

12

 2020-2021 Jeppiaar Institute of Technology

8) Random Testing:-

If a tester randomly selects input from the domain, this is called random testing

– Eg:- if the valid input domain for a module is all positive integer between 1 and

100,

– would randomly or unsystematically select valued form within that domain; for

example the values 55,24,3 might me chosen

9) Requirements Based Testing

Deals with validating the requirements given in the SRS

Requirements 1) Explicit 2) Implicit

Precondition

Detailed review of the requirements specification, it ensures that they are

consistent , correct , complete , testable.

Implied requirements are converted and documented as explicit

requirements more effective

Explicit & Implicit requirements are collected and documented as “ Test

Requirements specification “ (TRS)

Requirements are tracked by a Requirement Traceability Matrix (RTM)

RTM traces all the requirements from their origin through design, development

and testing.

Example : Locking (key is turned clockwise)

unlocking (key is turned anticlockwise)

Key No :123-456

Sample Requirement Specification

Sno ReqId Description Priority (H,
M,L)

1. BR-01 Inserting the key numbered 123
-456 and turning it clockwise
should facilitate locking

H

2. BR-02 Inserting the key numbered 123
-456 and turning it
anticlockwise should facilitate

unlocking

H

3. BR-03 only key number 123-456 can
be used to lock and unlock

H

4. BR-04 No other object can be used to
lock

M

5.

Requirement Traceability Matrix (RTM)

Req

Id

Description Priori

ty (H,
M,L)

Test

Conditions

Test Case

IDs

Phases of

testing

BR-
01

Inserting the key numbered 123 -456
and turning it clockwise should
facilitate locking

H Use key
123-456

Lock_001 unit
Compone
nt

13

 2020-2021 Jeppiaar Institute of Technology

BR-

02

Inserting the key numbered 123 -456

and turning it anticlockwise should
facilitate unlocking

H Use key

123-456

Lock_002 unit ,

Compone
nt

BR-

03

only key number 123-456 can be

used to lock and unlock

H Use key

123-456 to
lock

Lock_003 Compone

nt

Use key

123-456 to
unlock

Lock_004

 …..

Tests for higher priority requirements will get precedence over tests for lower

priority functionality that has higher risk is tested earlier

cross ref b/w requirements and the subsequent phases is recorded in the RTM

RTM helps in identifying the relationship between the requirements and test

cases. Combinations are

one (requirements) to one (Test Case)

one to many

many to one

many to many

one to none.

RTM in Requirement Based Testing:

it is a tool to track the testing status of each requirement, without missing any

requirements

prioritization enables selecting the right features to test

list of test cases that address the particular requirement can be viewed

Test metrics

1. Requirements addressed priority wise

2. Number of test case requirement wise

3. Total no of test cases

Test results

1. Total no of test cases passed

2. Total no of test cases failed

3. Total no of defects in requirements

4. No of requirements completed

5. No of requirements pending

Summary of Test I/P:

s.no Req

Id

Priority Test Cases Total

test

cases

Total

test

cases
Passed

Total

test

cases
Failed

%
Pass

No of

defects

1. BR-01 H Lock_01 1 1 0 100 1

2. BR-02 H Lock_02 1 1 0 100 1

3. BR-03 H Lock_03,04 2 1 1 50 3

4. …

Using above Observations can be made with respect to the requirement

14

 2020-2021 Jeppiaar Institute of Technology

10) Positive & Negative Testing

Positive testing

Verifies the requirements of the product & set of expected o/p

To prove that the product work as per specification

is to prove that the product works as per specification and expectations. A

product delivering an error when it is expected to give an error, is also a

part of positive testing.

+ve testing is done to verify the known test conditions.

Ex; Lock & Key

Negative Testing

Negative testing is done to show that the product does not fail when an

unexpected input is given. The purpose of negative testing is to try to break the

system. Negative testing covers scenarios for which the product is

not designed and coded. In other words, the input values may not have been

represented in the specification of the product.

-ve testing is done to break the product with unknowns

Difference between positive testing and negative testing

For positive testing if all documented

requirements and test conditions are

covered, then coverage can be

considered to be 100 percent.

no end to negative testing, and 100

percent coverage –ve testing is

impractical.

Negative testing requires a high degree

of among the testers to cover as many

"unknowns" as possible to avoid

at a customer site.

Summary of Black Box Testing

i/p values divided into class 1. Equivalent Class Partitioning

i/p values in range 2. Boundary Value Analysis

i/p & o/p values with multiple 3. Cause effect graphing

15

 2020-2021 Jeppiaar Institute of Technology

Condition

Checking expected & un expected i/p
Values

4. Positive & negative Testing

Language processor , work flow
,process flow

5. State based testing

To ensure the Requirements 6. Requirement Based Testing

To test domain expertise 7. Domain Testing

Documentation consistent with
Product

8. Documentation Testing

Using the White Box Approach to Test Case Design

• white box Testing The tester’s goal is to determine if all the logical and data

elements in the software unit are functioning properly.

• during the detailed design phase of development - knowledge needed for the

white box test design approach often becomes available to the tester in later

phase of software life cycle

• White Box test design follows black box design as the test efforts for a given

project progress in time

White Box Black Box

white box based test design is

most useful when testing small
components.

Black box useful for both small

& large s/w components

Level of detail required for test
design is very high

Comparatively low

Static Vs Structural Testing

Static Structural

Product is tested by tester by

going through the source code
not the executable or binaries

Tests are run by computer on

the built product

Does not involve executing the
Program

Involves executing the program
against predesigned test cases

Static test reveals :

Code works according to the functional requirements

16

 2020-2021 Jeppiaar Institute of Technology

Code has been written in accordance with the design developed earlier in the

project life cycle

Code for any functionality has been missed out

Code handles errors properly

Static test Methods :

1. Desk Checking of the code

Informal checking done by author

No structured method

No Logs / check lists

Depends on knowledge of the author

Disadvantages

A developer is not the best person to detect problems in his or her own code.

He or she may be tunnel vision and have blind spots to certain types of

problems.

Developers generally prefer to write new code rather than do any

form of testing

This method is essentially person-dependent and informal and thus may not

work consistently across all developers.

2. Code walkthrough

Group oriented - method and formal inspection are group-oriented

methods

Multiple perspective – walkthroughs and inspections is very thin and

varies from organization to organization. The advantage is that it brings

multiple perspectives

Multiple roles - a set of people look at the' program code and raise

questions for the author. The author explains the logic of the code, and

answers the questions. If the author is unable to answer some questions,

he or she then takes those questions and finds their answers

3. Formal /Fagan Inspection:

1) Group oriented , highly formal & structured

2) specific roles , requires thorough preparation

This method increases the number of defects detected by

1) demanding thorough preparation before an inspection/review;

2) enlisting multiple diverse views;

3) assigning specific roles to the multiple participants; and

4) going sequentially through the code in a structured manner.

Roles :

1) Author- programmer or developer

2) Moderator - expected to formally run the inspection according to the

process.

3) Inspector/Reviewer - provides, review comments for the code.

17

 2020-2021 Jeppiaar Institute of Technology

4) Scribe - takes detailed notes during the inspection meeting and circulates

them to the inspection team after the meeting.

Process:

Author & Moderator select the review team

Introductory Meeting

o Author present his perspective

o Typical Document (code, Design, SRS, Stds) is circulated

o Moderator informs date ,time venue – inspection meeting

Defect Logging Meeting:

The moderator takes the team sequentially through the program code, asking

each inspector if there are any defects in that part of the code. If any of the

inspectors raises a defect, then the inspection team deliberates on the defect

and, when agreed that there is a defect, classifies it in two dimensions

1)Major (major defects need immediate attention.) / Minor – (may not

substantially affect a program)

2) Systematic (machine-specific idiosyncrasies may have to removed by

changing the coding standards) / mis execution(happens because of an error

or slip on the part of the author. example : a wrong variable in a statement)

Review Meeting (if the defect severe)

Challenges in Formal /Fagan Inspection

Time Consuming

Logistics & Scheduling - multiple people involved

Not possible to review entire coding

Based on criticality & complexity of code is classified into

High ,medium Formal Inspection

Low Walk through , desk checking

Structural testing Methods:

The fundamental difference between structural testing and static testing is that

in structural testing tests are actually run by the computer on the built product,

whereas in static testing, the product is tested by humans using just the source

code and not the executables or binaries.

1. Unit Functional Testing – methods fall under debugging category

a. Initially Quick test – the developer can perform certain obvious tests, knowing

the input variables and the corresponding expected output Variables

b. modules with Complex logic & condition – build debug version(ex:

intermediate print statement)

c. run the product under debugger or IDE (single stepping of instruction, break

points etc)

18

 2020-2021 Jeppiaar Institute of Technology

2. Code Coverage Testing

Code coverage testing involves designing and executing test cases and finding

out the percentage of code that is covered by testing.

instrumentation

% of code covered by testing is found by a technique

specialized tool to rebuild the product , link with the set of lib

Reporting on the portion of the code covered frequently, so easy to identify

critical & most often code.

Types of coverage

a) Statement Coverage b)Path Coverage

c)Condition Coverage d)Function Coverage

a) Statement Coverage

It refers to writing test cases that execute each of the program statements.

There are 4 types of programming constructs.

1. Sequential control flow

2. Two-way decision statements like if then else

3. Multi-way decision statements like Switch

4. Loops like while do, repeat until and for

1) Sequential Control flow(SC)

Generate test data to make the program enter the sequential block, to make it

go through the entire block

this may not always be true , Asynchronous Exceptions - (for example, a divide

by zero)

Multiple Entry Point , in Non Structured Programming

SC metric= No of of statements exercised / Total No of Statements

2) Two-way decision statements –if then else

Have data to test the then part

Have data to test the else part

Relevance of statement coverage ?

If the program implements wrong requirements and this wrongly implemented

code is "fully tested," with 100 percent code coverage, it still is a wrong program

and hence the 100 percent code coverage does not mean anything.

Ex:

Total =0;

If(code ==’M’)

{ Stm1;

…

Stm7; }

Else

Percent = value/Total *100; /*divide be zero*/

19

 2020-2021 Jeppiaar Institute of Technology

when we test with code = "M," we will get 80 percent code coverage. But if the

data distribution in the real world is such that 90 percent of the time, the value

of code is not = "M," then, the program will fail 90 percent of the time (because

of the divide by zero in the highlighted line).

3) multi way decision statements – switch

It can be reduced to multiple two way if statement

4) Loops – while do ,repeat until , for

Looping statements can be handled in 3 ways.

1) Skip the loop

- so that the situation of the termination condition being true before

starting the loop is tested.

2) Exercise the loop between one & max number of times
- to check all possible "normal" operations of the loop

3) Cover the loop around the boundary (i.e n-1, n,n+1)

b) Path Coverage

statement coverage may not indicate “true coverage”. path coverage gives better

representation, split a program into a number distinct paths. A program can start

from the beginning and take any of the paths to its completion.

Path Coverage= No of of path exercised/Total No of of path in the

program

Ex: Date validation routine . date accepted as 3 fields dd, mm, yyyy.

i/p validate numeric i/p for date (dd , mm , yyyy)

leapyear() function (returns FALSE/ TRUE based on i/p)

array dayofMonth[] contains No of days in each month

20

 2020-2021 Jeppiaar Institute of Technology

The Flow chart shows different Path can be taken through program. Path label

is given as A… H .

A B-D-G
B-D-H

B-C-E-G
B-C-E-H

B-C-F-G
B-C-F-H

If Wrong Month

given

Except Feb Month

with correct and

wrong date given

Feb Month & Leap

year with correct and

wrong date given

Feb Month & Not

Leap year with

correct and wrong
date given

Summary of Test inputs

TC ID Path (Description) Input Expected o/p

TC1 A (Month Wrong Path) 20/ 0/2000 Invalid Date

TC2 B-D-G (Not Feb - days wrong) 31/4/2015 Invalid Date

TC3 B-D-H (Not Feb - days correct) 31/1/2015 valid Date

TC4 B-C-E-G (Feb , Leap Year - days wrong) 30/2/2016 Invalid Date

TC5 B-C-E-H (Feb , Leap Year - days correct) 29/2/2016 valid Date

TC6 B-C-F-G (Feb , Not Leap Year - days wrong) 29/2/2014 Invalid Date

TC7 B-C-F-H (Feb , Not Leap Year - days Correct) 10/2/2014 valid Date

C)Condition Coverage

It is necessary to have test cases that exercise each Boolean expression and have

test cases test produce the TRUE and FALSE paths.

Further refinement of path coverage , Make sure each Boolean expression is covered

for TRUE as well as FALSE paths

Ex: Path A covered on giving mm < 1 , reporting invalid month

Program not tested for mm> 12

Compliers perform optimizations to minimize the number of Boolean operations

and all the conditions may not get evaluated, even though the right path is

chosen.

For example, when there is an OR condition (as in the first IF statement above),

once the first part of the IF (for example, mm < 1) is found to be true, the second

part will not be evaluated at all as the overall value of the Boolean is TRUE.

Similarly, when there is an AND condition in a Boolean expression, when the

first condition evaluates to FALSE, the rest of the expression need not be

evaluated at all.

For all these reasons path testing is not sufficient.

Condition Coverage= No of of conditions exercised/Total No of of conditions in the program

Above formula indicates percentage of conditions covered by a set of test cases.

d) Function Coverage

This testing finds how many functions are covered by test cases

Ex: Database s/w -- inserting a row into the database

Payroll app – calculate tax

Adv:

1) Functions are easier to identify

2) Higher level of abstraction than code, easy to achieve 100%

21

 2020-2021 Jeppiaar Institute of Technology

3) more logical mapping to requirements than other type of coverage

4) importance of functions can be prioritized based on the importance of

requirements

5) provides natural transition to black box testing

3) Code Complexity Testing

While using these coverage : following questions are raised

1) which of the paths are independent ?(to minimize the test cases)

2) is there an upper bound on the number of tests to be executed to ensure all

the statements have been executed at least once ?

Ans : Cyclomatic complexity “ a metric that quantifies the complexity of a

program”

Steps in Determining Cyclomatic complexity

1) Construct Flow Graph

2) Compute cyclomatic complexity of the resultant flow graph

3) Determine a basis set of linearly independent paths

4) Prepare test cases that will force execution of each path in the basis set

Flow Graph

Program is represented in the form of a flow graph.

Flow graph can be constructed like a flowchart.

Flow graph consist of nodes and graphs.

Representation of Programming primitives in flowgraph

Steps to convert flowchart into flow graph

1) Identify the predicates or decision points

2) Ensure that the predicates are simple

22

Function Coverage = No of of function exercised/Total No of of functions in the Program

 2020-2021 Jeppiaar Institute of Technology

3) Combine all sequential statements into a single node

4) When a set of sequential statements are followed by a simple predicate ,

combine all the sequential statements & predicate check into one node & have 2

edges emanating from this one node

5) Make sure that all the edges terminate at some node.

To Compute cyclomatic complexity : 3 ways

Example : sum of all positive numbers (greater than zero)

a array name

num_of_entries no of elements
sum to store total value

1. pos_sum(a, num_of_entries, sum)

2. sum=0
3. int i=1

4. while (i <=num_of_entries)
5. if (a[i] >0)

6. sum=sum+a[i]

endif

7. i=i+1
end while

8. end pos_sum

Assign line no for each statement in the program before constructing the
flowgraph.

23

i) Cyclomatic Complexity V(G) = E – N + 2, where E is the number of edges

and N is the number of nodes in graph G

ii) V(G) = P + 1, where P is the number of predicate nodes in the flow graph G
iii) V(G) =the number of regions (Closed & Outer Region)

 2020-2021 Jeppiaar Institute of Technology

1) Construct Flow Graph

2) Calculate the cyclomatic complexity of the resultant flow graph

i)V(G)= E - N+2 E= 7, N= 6 V(G) = 7 - 6 + 2 =3

ii)V(G)= P+1 P=2 V(G) = 2+1 = 3

iii) V(G) = No of Regions(R) R=3 V(G) = 3

3) Determine a basis set (independent path)

A path is a sequence of control flow nodes usually beginning from the entry

node of a graph through to the exit node.

(i) 1-2-3-4-8 (skip the loop)

(ii) 1-2-3-4-5-6-7-4-8 (adding number to sum)

(iii) 1-2-3-4-5-7-4-8 (not adding number to sum)

4) Prepare summary of test cases

Test
case Id

Input Expected o/p Actual o/p Result
:Pass/Fail

TC1 num_of_entries = -5 0 0 Pass

TC2
num_of_entries = 3
30

60

20

i=1 sum=30
i=2 sum=90
i=3 sum=110

110

Pass

Sum=110

TC3
num_of_entries = 1
-30

i=1 sum=0

0

Pass

Sum=0

24

 2020-2021 Jeppiaar Institute of Technology

Meaning of cyclomatic complexity value

Complexity Meaning

1-10 Well written code , testability is high , cost/effort maintain
is low

10-20 Moderately complex , testability is medium ,cost/effort to
maintain is medium

20-40 Very complex , testability is low ,cost/effort to maintain is
High

>40 Not testable ,any amount of money /effort to maintain may
not be enough

Problem: Biggest of 3 Numbers

1 Read A,B,C

2 If A > B then

3 If A >C then

4 Print “ A is greater”

Else

5 Print “C is greater”

6 Endif

Else

7 If B >C then

8 Print “ B is greater”

Else

9 Print “C is greater”

10 Endif

11 Endif

1. Construct Flow Graph

25

 2020-2021 Jeppiaar Institute of Technology

2. Calculate Cyclomatic Complexity

1. V(G)= E - N+2 E= 7, N= 11 V(G) = 13 -11 + 2 =4

2. V(G)= P+1 P=3 V(G) = 3+1 = 4

3. V(G) = No of Regions(R) R=4 V(G) = 4

4. Derive Basis Set

(i) 1-2-3-4-6-11 (A is greater)

(ii) 1-2-3-5-6-11 (C is greater)

(iii) 1-2-7-8-10-11 (B is greater)

(iv) 1-2-7-9-10 -11 (C is greater)

5. Summary of Test I/p

Test
case Id

Input Expected o/p Actual o/p Result
:Pass/Fail

TC1
Path1

A= 12 B=10 C=2 A is greater A is greater Pass

TC2
Path2

A= 12 B=10 C= 23 C is greater C is greater Pass

TC3
Path3

A= 10 B=12 C= 2 B is greater B is greater Pass

TC4
Path4

A= 10 B=12 C= 23 C is greater C is greater Pass

Additional White Box Test Design Approaches

Data Flow and White Box Test Design

Mutation Testing

Loop Testing

Test Adequacy Criteria TAC:- (stopping rule)

Def: Tester need a framework for deciding which structural elements to select

as the focus of testing, for choosing the appropriate test data and for deciding

when the testing efforts are adequate enough to terminate the process with

confidence that the software is working properly.

It is minimal standards for testing a program

– Helping testers to select properties of a program to focus on during test

– Helping testers to select a test data set for a program based on the selected

properties

– Supporting testers with development of quantitative objects for testing

– Indicating to testers whether or not testing can be stopped for that program

Types of TAC:

1. Program Based TAC : focus on structural properties of program , includes logic

,control structure , data flow

2. Specification based TAC: focus on program specification

3. Random TAC: ignores both program structure& specification

Ex: TAC focus on statement/branch properties

26

 2020-2021 Jeppiaar Institute of Technology

“A test data set is statement, or branch , adequate if a test set T for program P

Causes all the statements, or branches to be executed respectively”

Coverage Analysis: The TAC & the requirement that certain features of the code

are to be exercised by the test case, also named as coverage criteria

Degree of coverage : when a coverage related testing goal is expressed as a

percent.

degree of coverage < 100% due to the following:-

1. The Nature of the Unit

i. Some statements/branches may not be reachable

ii. The unit may be simple, and not mission or safety , critical and so

complete coverage is thought to be unnecessary

2. The lack of resources

i. The time set aside for testing is not adequate to achieve 100% coverage

ii. There are not enough trained testers to achieve complete coverage for all

the units

iii. There is a lack of tools to support complete coverage.

3. Other project related issued such as timing, scheduling and marketing

constraints.

Ex: 4 branches in s/w unit

2 are executed by planned set of test cases
Degree of branch coverage : 50%

Coverage goal is
not met

Develop Additional test cases & re execute

the test cases

Continue until

desired degree is
obtained

Evaluating Test Adequacy Criteria :TAC hierarchy

Tester can select appropriate criterion using the hierarchy

Criteria at the top includes the Criteria at the Bottom , for example All def-

use path adequacy means - tester achieved branch & statement adequacy

Each Adequacy Criteria has both strength and weakness

Stronger criteria tester need more time and resource

Example : (Sample code with data flow information)

def variable defined

use variable Used
p-use Predicate Use , variable used in condition

c-use Computation use , variable used in calculation

1 sum=0 sum, def

2 read (n) n, def
3 i=1 i, def

4 while (i <=n) i, n p-use
5 read (number) number, def
6. sum=sum+number sum, def, sum, number, c-use

7 i=i+1 i, def, c-use
8 end while
9 print (sum) sum, c-use

27

 2020-2021 Jeppiaar Institute of Technology

Ex: DU Chain (Def-Use Path) Chain in Data flow Testing

Def-Use Path a path from a variable definition to a use is called a def-use path

Partial Ordering for Test Adequacy Criteria

Axioms

set of axioms that allow testers to formalize properties which should be satisfied

by any good program-based test data adequacy criterion

Testers can use the axioms to

recognize both strong and weak adequacy criteria;

28

 2020-2021 Jeppiaar Institute of Technology

focus attention on the properties that an effective test data adequacy criterion

should exhibit;

select an appropriate criterion for the item under test;

stimulate thought for the development of new criteria;

The axioms are based on the following set of assumptions

(i) programs are written in a structured programming language;

(ii) programs are SESE (single entry/single exit);

(iii) all input statements appear at the beginning of the program;

(iv) all output statements appear at the end of the program.

The axioms/properties described by Weyuker are the following

1. Applicability Property

2. Non exhaustive Applicability Property

3. Monotonicity Property

4. Inadequate Empty Set

5. Anti extensionality Property

6. General Multiple Change Property

7. Anti decomposition Property

8. Anti composition Property

9. Renaming Property

10. Complexity Property

11. Statement Coverage Property

Sample test data adequacy criteria and axiom satisfaction

Mutation Testing

• is a testing technique that focuses on measuring the adequacy of test cases.

• A test case is adequate if it is useful in detecting faults in a program.

• A test case can be shown to be adequate by finding at least one mutant program

that generates a different output than does the original program for that test

case.

29

 2020-2021 Jeppiaar Institute of Technology

• If the original program and all mutant programs generate the same output, the

test case is inadequate.

Basic Steps

Kinds of Mutation

A mutation is a small change in a program.

Value Mutations: these mutations involve changing the values of constants

or parameters (by adding or subtracting values etc), e.g. loop bounds { being

one out on the start or finish is a very common error.

Decision Mutations: this involves modifying conditions to reflect potential

slips and errors in the coding of conditions in programs, e.g. a typical mutation

might be replacing a > by a < in a comparison.

Statement Mutations: these might involve deleting certain lines to reflect

omissions in coding or swapping the order of lines of code. There are other

operations, e.g. changing operations in arithmetic expressions. A typical

omission might be to omit the increment on some variable in a while loop.

Example of Testing By Decision Mutation

First test data set--M=1, N=2 , the original function returns 2

• five mutants: replace”>“ operator in if statements by (>,<,<=or=)

Program Mutants

function MAX(M ,N:INTEGER)

return INTEGER is
begin

if M>N then

return M;

else
return N;

end if:
end MAX;

Mutants Outputs Comparison

if M>=N then 2 live
if M<N then 1 dead
if M<=N then 1 dead

if M=N then 2 live
if M< >N then 1 dead

• Executing each mutant: adding test data M=2, N=1 will eliminate the latter live

mutant, but the former live mutant remains live because it is equivalent to the

original function. No test data can eliminate it.

30

	d222cc2405fbb87b586aba95799113af8e4664d2d1259af01595c1b5d1372eea.pdf
	66c863df-7da0-4205-9585-5514b6e8f190.pdf

