
CS8602-Compiler Design Department of CSE

1
2020 – 2021 Jeppiaar Institute of Technology

UNIT V CODE OPTIMIZATION 8

Principal Sources of Optimization – Peep-hole optimization - DAG- Optimization of Basic

Blocks- Global Data Flow Analysis - Efficient Data Flow Algorithm.

CODE OPTIMIZATION

INTRODUCTION

The code produced by the straight forward compiling algorithms can often be made to run

faster or take less space, or both. This improvement is achieved by program transformations

that are traditionally called optimizations. Compilers that apply code-improving

transformations are called optimizing compilers.

Optimizations are classified into two categories. They are
 Machine independent optimizations:
 Machine dependant optimizations:

Machine independent optimizations:

 Machine independent optimizations are program transformations that improve the target

code without taking into consideration any properties of the target machine.

Machine dependant optimizations:

 Machine dependant optimizations are based on register allocation and utilization of special

machine-instruction sequences.

The criteria for code improvement transformations:

 The transformation must preserve the meaning of programs.

 A transformation must, on the average, speed up programs by a measurable

amount.

 The transformation must be worth the effort

BASIC BLOCKS AND FLOW GRAPHS

Basic Blocks

 A basic block is a sequence of consecutive statements in which flow of control enters at

the beginning and leaves at the end without any halt or possibility of branching except at

the end.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

2
2020 – 2021 Jeppiaar Institute of Technology

Basic Block Construction:

Algorithm: Partition into basic blocks

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement in exactly one block

Method:

1. We first determine the set of leaders, the first statements of basic blocks. The

rules we use are of the following:

a. The first statement is a leader.

b. Any statement that is the target of a conditional or unconditional goto is

a leader.

c. Any statement that immediately follows a goto or conditional goto

statement is a leader.

2. For each leader, its basic block consists of the leader and all statements up to

but not including the next leader or the end of the program.

 consider the following source code for dot product of two vectors a and b of length 20

begin

prod :=0;

i:=1; do

begin

prod :=prod+ a[i]* b[i]; i

:=i+1;

end

while i <= 20

end

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

3
2020 – 2021 Jeppiaar Institute of Technology

 The three -address code for the above source program is given as :

 (1) prod := 0

 (2) i := 1

 (3) t1 := 4* i

 (4) t2 := a[t1] /*compute a[i] */

 (5) t3 := 4*i

 (6) t4 := b[t3] /*compute b[i] */

 (7) t5 := t2*t4

(8) t6 := prod+t5

(9) prod := t6

(10) t7 := i+1

(11) i := t7

(12)

if i<=20 goto

(3)

Basic block 1: Statement (1) to (2)

Basic block 2: Statement (3) to (12)

Flow Graphs

o Flow graph is a directed graph containing the flow-of-control information for the set of

basic blocks making up a program.
o The nodes of the flow graph are basic blocks. It has a distinguished initial node.

o E.g.: Flow graph for the vector dot product is given as follows:

 B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2

o The target of jump from last statement of B1 is the first statement B2, so there is an edge

from B1 (last statement) to B2 (first statement).

B1 is the predecessor of B2, and B2 is a successor of B1

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

4
2020 – 2021 Jeppiaar Institute of Technology

prod : = 0 B1

i : = 1

t1 : = 4 * i
t2 : = a [t1]
t3 : = 4 * i B2
t4 : = b [t3]
t5 : = t2 * t4
t6 : = prod +

t5 prod : = t6

t7 : = i + 1
i : = t7
ifi<= 20 goto B2

THE DAG REPRESENTATION FOR BASIC BLOCKS

 A DAG for a basic block is a directed acyclic graph with the following labels on nodes:

1. Leaves are labeled by unique identifiers, either variable names or constants.

2. Interior nodes are labeled by an operator symbol.

3. Nodes are also optionally given a sequence of identifiers for labels to store the

computed values.

 DAGs are useful data structures for implementing transformations on basic blocks.

 It gives a picture of how the value computed by a statement is used in subsequent

statements.

 It provides a good way of determining common sub - expressions.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

5
2020 – 2021 Jeppiaar Institute of

Technology

Algorithm for construction of DAG

Input: A basic block

Output: A DAG for the basic block containing the following information:

1. A label for each node. For leaves, the label is an identifier. For interior nodes, an
operator symbol.

2. For each node a list of attached identifiers to hold the computed values.
Case (i)x := y OP z

Case (ii)x := OP y

Case (iii)x := y

Method:

Step 1: If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z) . (Checkingfor common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create such

a node.

For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached

identifiers for the noden found in step 2 and set node(x) to n.

Example: Consider the block of three- address statements:

1. t1 := 4* i
2. t2 := a[t1]
3. t3 := 4* i
4. t4 := b[t3]
5. t5 := t2*t4
6. t6 := prod+t5
7. prod := t6
8. t7 := i+1
9. i := t7
10. if i<=20 goto (1)

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design

Department of CSE

6
2020 – 2021 Jeppiaar Institute of Technology

CS8602-Compiler Design

Department of CSE

7
2020 – 2021 Jeppiaar Institute of Technology

Stages in DAG Construction

CS8602-Compiler Design

Department of CSE

8
2020 – 2021 Jeppiaar Institute of Technology

CS8602-Compiler Design

Department of CSE

9
2020 – 2021 Jeppiaar Institute of Technology

CS8602-Compiler Design

Department of CSE

10
2020 – 2021 Jeppiaar Institute of Technology

CS8602-Compiler Design Department of CSE

11
2020 – 2021 Jeppiaar Institute of Technology

Application of DAGs:

1. We can automatically detect common sub expressions.

2. We can determine which identifiers have their values used in the block.

CS8602-Compiler Design Department of CSE

12
2020 – 2021 Jeppiaar Institute of Technology

3. We can determine which statements compute values that could be used outside the block.

PRINCIPAL SOURCES OF OPTIMISATION

 A transformation of a program is called local if it can be performed by looking only at

the statements in a basic block; otherwise, it is called global.
 Many transformations can be performed at both the local and global levels. Local

transformations are usually performed first.

Function-Preserving Transformations

 There are a number of ways in which a compiler can improve a program without

changing the function it computes.
 The transformations

 Common sub expression elimination,

 Copy propagation,

 Dead-code elimination, and

 Constant folding

are common examples of such function-preserving transformations. The other

transformations come up primarily when global optimizations are performed.

Frequently, a program will include several calculations of the same value, such as an offset in

an array. Some of the duplicate calculations cannot be avoided by the programmer because they

lie below the level of detail accessible within the source language.

 Common Sub expressions elimination:

 An occurrence of an expression E is called a common sub-expression if E was

previously computed, and the values of variables in E have not changed since the

previous computation. We can avoid recomputing the expression if we can use the

previously computed value.
 For example

 t1: = 4*i

 t2: = a [t1]

 t3: = 4*j

 t4: = 4*i

 t5: = n

 t6: = b [t4] +t5

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

13
2020 – 2021 Jeppiaar Institute of Technology

 The above code can be optimized using the common sub-expression elimination as

 t1: = 4*i

 t2: = a [t1]

 t3: = 4*j

 t5: = n

 t6: = b [t1] +t5
The common sub expression t 4: =4*i is eliminated as its computation is already in t1.

And value of i is not been changed from definition to use.

 Copy Propagation:

 Assignments of the form f : = g called copy statements, or copies for short. The idea

behind the copy-propagation transformation is to use g for f, whenever possible after the

copy statement f: = g. Copy propagation means use of one variable instead of another.

This may not appear to be an improvement, but as we shall see it gives us an opportunity

to eliminate x.
 For

example:

x=Pi;

……

A=x*r*r;

The optimization using copy propagation can be done as follows:

A=Pi*r*r;

Here the variable x is eliminated

Dead-Code Eliminations:

 A variable is live at a point in a program if its value can be used subsequently; otherwise, it

is dead at that point. A related idea is dead or useless code, statements that compute

values that never get used. While the programmer is unlikely to introduce any dead code

intentionally, it may appear as the result of previous transformations. An optimization

can be done by eliminating dead code.

Example:

 i=0;
if(i=1)

{

a=b+5;

}

Here, ‘if’ statement is dead code because this condition will never get satisfied.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

14
2020 – 2021 Jeppiaar Institute of Technology

 Constant folding:

 We can eliminate both the test and printing from the object code. More generally,

deducing at compile time that the value of an expression is a constant and using the

constant instead is known as constant folding.

 One advantage of copy propagation is that it often turns the copy statement into dead
code.

For example,

a=3.14157/2 can be replaced by

a=1.570 there by eliminating a division operation.

Loop Optimizations:

 We now give a brief introduction to a very important place for optimizations, namely

loops, especially the inner loops where programs tend to spend the bulk of their time.

The running time of a program may be improved if we decrease the number of

instructions in an inner loop, even if we increase the amount of code outside that loop.
 Three techniques are important for loop optimization:

 code motion, which moves code outside a loop;

 Induction-variable elimination, which we apply to replace variables from inner

loop.

 Reduction in strength, which replaces and expensive operation by a cheaper

one, such as a multiplication by an addition.

 Code Motion:

An important modification that decreases the amount of code in a loop is code motion.

This transformation takes an expression that yields the same result independent of the

number of times a loop is executed (a loop-invariant computation) and places the

expression before the loop. Note that the notion “before the loop” assumes the existence

of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant

computation in the following while-statement:

while (i <= limit-2) /* statement does not change limit*/

Code motion will result in the equivalent of

 t= limit-2;

while (i<=t) /* statement does not change limit or t */

 Induction Variables :

 Loops are usually processed inside out. For example consider the loop around B3.

 Note that the values of j and t4 remain in lock-step; every time the value of j decreases

by 1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

15
2020 – 2021 Jeppiaar Institute of Technology

induction variables.
 When there are two or more induction variables in a loop, it may be possible to

get rid of all but one, by the process of induction-variable elimination. For the inner loop

around B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in

B4. However, we can illustrate reduction in strength and illustrate a part of the process

of induction-variable elimination. Eventually j will be eliminated when the outer loop of

B2 - B5 is considered.

Example:

As the relationship t4:=4*j surely holds after such an assignment to t4in Fig. and t4 is not

changed elsewhere in the inner loop around B3, it follows that just after the statement j:=j -1 the

relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t 4:= 4*j by t4:= t4-4.

The only problem is that t 4 does not have a value when we enter block B3 for the first time.

Since we must maintain the relationship t4=4*j on entry to the block B3, we place an

initializations of t4 at the end of the block where j itself is initialized, shown by the dashed

addition to block B1 in second Fig.

 Before after

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

16
2020 – 2021 Jeppiaar Institute of Technology

 The replacement of a multiplication by a subtraction will speed up the object code

if multiplication takes more time than addition or subtraction, as is the case on

many machines.

 Reduction In Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the

target machine. Certain machine instructions are considerably cheaper than others and

can often be used as special cases of more expensive operators.
 For example, x² is invariably cheaper to implement as x*x than as a call to an

exponentiation routine. Fixed-point multiplication or division by a power of two is

cheaper to implement as a shift. Floating-point division by a constant can be

implemented as multiplication by a constant, which may be cheaper.

PEEPHOLE OPTIMIZATION

A statement-by-statement code-generations strategy often produce target code that contains

redundant instructions and suboptimal constructs .The quality of such target code can be

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

17
2020 – 2021 Jeppiaar Institute of Technology

improved by applying “optimizing” transformations to the target program.

A simple but effective technique for improving the target code is peephole optimization, a

method for trying to improving the performance of the target program by examining a short

sequence of target instructions (called the peephole) and replacing these instructions by a

shorter or faster sequence, whenever possible.

The peephole is a small, moving window on the target program. The code in the peephole need

not contiguous, although some implementations do require this. It is characteristic of peephole

optimization that each improvement may spawn opportunities for additional improvements.

We shall give the following examples of program transformations that are characteristic of

peephole optimizations:

 Redundant-instructions elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms

 Unreachable Code

Redundant Loads And Stores:
If we see the instructions sequence

(1) MOV R0,a

(2) MOV a,R0

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value

of ais already in register R 0.If (2) had a label we could not be sure that (1) was always

executed immediately before (2) and so we could not remove (2).

Unreachable Code:

Another opportunity for peephole optimizations is the removal of unreachable instructions.

An unlabeled instruction immediately following an unconditional jump may be removed. This

operation can be repeated to eliminate a sequence of instructions. For example, for debugging

purposes, a large program may have within it certain segments that are executed only if a

variable debug is 1. In C, the source code might look like:

#define debug 0

….

If (debug) {

Print debugging information

CS8602-Compiler Design Department of CSE

18
2020 – 2021 Jeppiaar Institute of Technology

}

In the intermediate representations the if-statement may be translated as:

If debug =1 goto L1 goto L2

L1: print debugging information L2: ………………………… (a)

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what

the value of debug; (a) can be replaced by:

If debug ≠1 goto L2

Print debugging information

L2: …………………………… (b)

If debug ≠0 goto L2

Print debugging information

L2: …………………………… (c)

As the argument of the statement of (c) evaluates to a constant true it can be replaced

By goto L2. Then all the statement that print debugging aids are manifestly unreachable

and can be eliminated one at a time.

Flows-Of-Control Optimizations:

The unnecessary jumps can be eliminated in either the intermediate code or the target

code by the following types of peephole optimizations. We can replace the jump sequence

goto L1

….

L1: gotoL2 (d)

by the sequence

goto L2

….

L1: goto L2

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto

L2 provided it is preceded by an unconditional jump .Similarly, the sequence

CS8602-Compiler Design Department of CSE

19
2020 – 2021 Jeppiaar Institute of Technology

if a < b goto L1

….

L1: goto L2 (e)

can be replaced by

If a < b goto L2

….

L1: goto L2

Ø Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional

goto. Then the sequence

goto L1

L1: if a < b goto L2 (f) L3:

may be replaced by

If a < b goto L2

goto L3

…….

L3:

While the number of instructions in(e) and (f) is the same, we sometimes skip the

unconditional jump in (f), but never in (e).Thus (f) is superior to (e) in execution time

Algebraic Simplification:

 There is no end to the amount of algebraic simplification that can be attempted through

peephole optimization. Only a few algebraic identities occur frequently enough that it is

worth considering implementing them .For example, statements such as

x := x+0 Or

x := x * 1

CS8602-Compiler Design Department of CSE

20
2020 – 2021 Jeppiaar Institute of Technology

 Are often produced by straightforward intermediate code-generation algorithms, and they

can be eliminated easily through peephole optimization.

Reduction in Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the

target machine. Certain machine instructions are considerably cheaper than others and can

often be used as special cases of more expensive operators.

 For example, x² is invariably cheaper to implement as x*x than as a call to an exponentiation

routine. Fixed-point multiplication or division by a power of two is cheaper to implement

as a shift. Floating-point division by a constant can be implemented as multiplication by a

constant, which may be cheaper.

X2 →X*X

Use of Machine Idioms:

 The target machine may have hardware instructions to implement certain specific operations

efficiently. For example, some machines have auto-increment and auto-decrement

addressing modes. These add or subtract one from an operand before or after using its

value.

 The use of these modes greatly improves the quality of code when pushing or popping a

stack, as in parameter passing. These modes can also be used in code for statements

like

 i:=i+1 → i++

 i:=i-1 → i- -

OPTIMIZATION OF BASIC BLOCKS

There are two types of basic block optimizations. They are :

 Structure-Preserving Transformations

 Algebraic Transformations

Structure-Preserving Transformations:

The primary Structure-Preserving Transformation on basic blocks are:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

21
2020 – 2021 Jeppiaar Institute of Technology

 Common sub-expression elimination

 Dead code elimination

 Renaming of temporary variables

 Interchange of two independent adjacent statements.

 Common sub-expression elimination:

Common sub expressions need not be computed over and over again. Instead they can be

computed once and kept in store from where it’s referenced when encountered again – of course

providing the variable values in the expression still remain constant.

Example:

a=b+c

 b=a-d

 c=b+c

 d=a-d

The 2
nd

 and 4
th

 statements compute the same expression: b+c and a-d

Basic block can be transformed to

a: = b+c

b: = a-d

c: = b+c

d: = b

Dead code elimination:

It’s possible that a large amount of dead (useless) code may exist in the program. This

might be especially caused when introducing variables and procedures as part of construction or

error -correction of a program – once declared and defined, one forgets to remove them in case

they serve no purpose. Eliminating these will definitely optimize the code.

 Renaming of temporary variables:

 A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is

another temporary name, and change all uses of t to u.
In this we can transform a basic block to its equivalent block called normal-form block

Interchange of two independent adjacent statements:

 Two statements

t1:=b+c

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

22
2020 – 2021 Jeppiaar Institute of Technology

t2:=x+y

can be interchanged or reordered in its computation in the basic block when value of t1

does not affect the value of t2.

Algebraic Transformations:

 Algebraic identities represent another important class of optimizations on basic blocks.

This includes simplifying expressions or replacing expensive operation by cheaper ones

i.e. reduction in strength.
 Another class of related optimizations is constant folding. Here we evaluate constant

expressions at compile time and replace the constant expressions by their values. Thus

the expression 2*3.14 would be replaced by 6.28.
 The relational operators <=, >=, <, >, + and = sometimes generate unexpected common

sub expressions.
 Associative laws may also be applied to expose common sub expressions. For example,

if the source code has the assignments

a :=b+c

e :=c+d+b

the following intermediate code may be generated:

a :=b+c

t :=c+d
e :=t+b

 Example:

x:=x+0 can be removed

x:=y**2 can be replaced by a cheaper statement x:=y*y

INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS

In order to do code optimization and a good job of code generation, compiler needs to collect

information about the program as a whole and to distribute this information to each block in the

flow graph. A compiler could take advantage of “reaching definitions” , such as knowing

where a variable like debug was last defined before reaching a given block, in order to perform

transformations are just a few examples of data-flow information that an optimizing compiler

collects by a process known as data-flow analysis.

Data-flow information can be collected by setting up and solving systems of equations

of the form :

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

23
2020 – 2021 Jeppiaar Institute of Technology

out [S] = gen [S] U (in [S] - kill [S])

This equation can be read as “ the information at the end of a statement is either generated

within the statement , or enters at the beginning and is not killed as control flows through the

statement.” Such equations are called data-flow equation.

1. The details of how data-flow equations are set and solved depend on three factors. The

notions of generating and killing depend on the desired information, i.e., on the data

flow analysis problem to be solved. Moreover, for some problems, instead of proceeding

along with flow of control and defining out[S] in terms of in[S], we need to proceed

backwards and define in[S] in terms of out[S].

2. Since data flows along control paths, data-flow analysis is affected by the constructs in

a program. In fact, when we write out[s] we implicitly assume that there is unique end

point where control leaves the statement; in general, equations are set up at the level of

basic blocks rather than statements, because blocks do have unique end points.

3. There are subtleties that go along with such statements as procedure calls, assignments

through pointer variables, and even assignments to array variables.

Points and Paths:

Within a basic block, we talk of the point between two adjacent statements, as well as

the point before the first statement and after the last. Thus, block B1 has four points: one before

any of the assignments and one after each of the three assignments.

CS8602-Compiler Design Department of CSE

24
2020 – 2021 Jeppiaar Institute of Technology

Fig. 5.6 A flow graph

Now let us take a global view and consider all the points in all the blocks. A path from

p1 to pn is a sequence of points p1, p2,….,pn such that for each i between 1 and n-1, either

1. Pi is the point immediately preceding a statement and pi+1 is the point immediately

following that statement in the same block, or

2. Pi is the end of some block and pi+1 is the beginning of a successor block.

Reaching definitions:

A definition of variable x is a statement that assigns, or may assign, a value to x. The

most common forms of definition are assignments to x and statements that read a value from an

i/o device and store it in x. These statements certainly define a value for x, and they are referred

to as unambiguous definitions of x. There are certain kinds of statements that may define a

value for x; they are called ambiguous definitions.

The most usual forms of ambiguous definitions of x are:

CS8602-Compiler Design Department of CSE

25
2020 – 2021 Jeppiaar Institute of Technology

1. A call of a procedure with x as a parameter or a procedure that can access x because x

is in the scope of the procedure.

2. An assignment through a pointer that could refer to x. For example, the assignment

*q:=y is a definition of x if it is possible that q points to x. we must assume that an

assignment through a pointer is a definition of every variable.

We say a definition d reaches a point p if there is a path from the point immediately

following d to p, such that d is not “killed” along that path. Thus a point can be reached by

an unambiguous definition and an ambiguous definition of the appearing later along one path.

Fig. 5.7 Some structured control constructs

Data-flow analysis of structured programs:

Flow graphs for control flow constructs such as do-while statements have a useful

property: there is a single beginning point at which control enters and a single end point that

control leaves from when execution of the statement is over. We exploit this property when we

talk of the definitions reaching the beginning and the end of statements with the following

syntax.

CS8602-Compiler Design Department of CSE

26
2020 – 2021 Jeppiaar Institute of Technology

S->id: = E| S; S | if E then S else S | do S while E

E->id + id| id

Expressions in this language are similar to those in the intermediate code, but the flow

graphs for statements have restricted forms.

We define a portion of a flow graph called a region to be a set of nodes N that includes a

header, which dominates all other nodes in the region. All edges between nodes in N are in the

region, except for some that enter the header. The portion of flow graph corresponding to a

statement S is a region that obeys the further restriction that control can flow to just one outside

block when it leaves the region.

We say that the beginning points of the dummy blocks at the statement’s region are the

beginning and end points, respective equations are inductive, or syntax-directed, definition of

the sets in[S], out[S], gen[S], and kill[S] for all statements S. gen[S] is the set of definitions

“generated” by S while kill[S] is the set of definitions that never reach the end of S.

• Consider the following data-flow equations for reaching definitions :

Fig. 5.8 (a) Data flow equations for reaching definitions

Observe the rules for a single assignment of variable a. Surely that assignment is a

definition of a, say d. Thus

gen[S]={d}

On the other hand, d “kills” all other definitions of a, so we write

CS8602-Compiler Design Department of CSE

27
2020 – 2021 Jeppiaar Institute of Technology

Kill[S] = Da - {d}

Where, Da is the set of all definitions in the program for variable a.

Fig. 5.8 (b) Data flow equations for reaching definitions

Under what circumstances is definition d generated by S=S1; S2? First of all, if it is

generated by S2, then it is surely generated by S. if d is generated by S1, it will reach the end of

S provided it is not killed by S2. Thus, we write

gen[S]=gen[S2] U (gen[S1]-kill[S2])

Similar reasoning applies to the killing of a definition, so we have

Kill[S] = kill[S2] U (kill[S1] - gen[S2])

Conservative estimation of data-flow information:

There is a subtle miscalculation in the rules for gen and kill. We have made the

assumption that the conditional expression E in the if and do statements are “uninterpreted”;

that

is, there exists inputs to the program that make their branches go either way.

We assume that any graph-theoretic path in the flow graph is also an execution path, i.e.,

a path that is executed when the program is run with least one possible input. When we

compare the computed gen with the “true” gen we discover that the true gen is always a

subset of the computed gen. on the other hand, the true kill is always a superset of the

computed kill.

CS8602-Compiler Design Department of CSE

28
2020 – 2021 Jeppiaar Institute of Technology

These containments hold even after we consider the other rules. It is natural to wonder

whether these differences between the true and computed gen and kill sets present a serious

obstacle to data-flow analysis. The answer lies in the use intended for these data.

Overestimating the set of definitions reaching a point does not seem serious; it merely

stops us from doing an optimization that we could legitimately do. On the other hand,

underestimating the set of definitions is a fatal error; it could lead us into making a change in

the program that changes what the program computes. For the case of reaching definitions, then,

we call a set of definitions safe or conservative if the estimate is a superset of the true set of

reaching definitions. We call the estimate unsafe, if it is not necessarily a superset of the truth.

Returning now to the implications of safety on the estimation of gen and kill for

reaching definitions, note that our discrepancies, supersets for gen and subsets for kill are both

in the safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a

point, and cannot prevent a definition from reaching a place that it truly reached. Decreasing kill

can only increase the set of definitions reaching any given point.

Computation of in and out:

Many data-flow problems can be solved by synthesized translation to compute gen and

kill. It can be used, for example, to determine computations. However, there are other kinds of

data-flow information, such as the reaching-definitions problem. It turns out that in is an

inherited attribute, and out is a synthesized attribute depending on in. we intend that in[S] be the

set of definitions reaching the beginning of S, taking into account the flow of control throughout

the entire program, including statements outside of S or within which S is nested.

The set out[S] is defined similarly for the end of s. it is important to note the distinction

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S without

following paths outside S. Assuming we know in[S] we compute out by equation, that is

Out[S] = gen[S] U (in[S] - kill[S])

Considering cascade of two statements S1; S2, as in the second case. We start by

observing in[S1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2], since a

definition reaches the beginning of S2 if and only if it reaches the end of S1. Now we can

compute out[S2], and this set is equal to out[S].

Consider the if-statement. we have conservatively assumed that control can follow either

branch, a definition reaches the beginning of S1 or S2 exactly when it reaches the beginning of

S. That is,

in[S1] = in[S2] = in[S]

CS8602-Compiler Design Department of CSE

29
2020 – 2021 Jeppiaar Institute of Technology

If a definition reaches the end of S if and only if it reaches the end of one or both

substatements; i.e,

out[S]=out[S1] U out[S2]

Representation of sets:

Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit

vectors. We assign a number to each definition of interest in the flow graph. Then bit vector

representing a set of definitions will have 1 in position I if and only if the definition numbered I

is in the set.

The number of definition statement can be taken as the index of statement in an array

holding pointers to statements. However, not all definitions may be of interest during global

data-flow analysis. Therefore the number of definitions of interest will typically be recorded in

a separate table.

A bit vector representation for sets also allows set operations to be implemented

efficiently. The union and intersection of two sets can be implemented by logical or and logical

and, respectively, basic operations in most systems-oriented programming languages. The

difference A-B of sets A and B can be implement complement of B and then using logical and

to compute A

Local reaching definitions:

Space for data-flow information can be traded for time, by saving information only at

certain points and, as needed, recomputing information at intervening points. Basic blocks are

usually treated as a unit during global flow analysis, with attention restricted to only those

points that are the beginnings of blocks.

Since there are usually many more points than blocks, restricting our effort to blocks is a

significant savings. When needed, the reaching definitions for all points in a block can be

calculated from the reaching definitions for the beginning of a block.

Use-definition chains:

It is often convenient to store the reaching definition information as” use-definition

chains” or “ud-chains”, which are lists, for each use of a variable, of all the definitions that

reaches that use. If a use of variable a in block B is preceded by no unambiguous definition of a,

then ud-chain for that use of a is the set of definitions in in[B] that are definitions of a.in

CS8602-Compiler Design Department of CSE

30
2020 – 2021 Jeppiaar Institute of Technology

addition, if there are ambiguous definitions of a ,then all of these for which no unambiguous

definition of a lies between it and the use of a are on the ud-chain for this use of a.

Evaluation order:

The techniques for conserving space during attribute evaluation, also apply to the

computation of data-flow information using specifications. Specifically, the only constraint on

the evaluation order for the gen, kill, in and out sets for statements is that imposed by

dependencies between these sets. Having chosen an evaluation order, we are free to release the

space for a set after all uses of it have occurred. Earlier circular dependencies between attributes

were not allowed, but we have seen that data-flow equations may have circular dependencies.

General control flow:

Data-flow analysis must take all control paths into account. If the control paths are

evident from the syntax, then data-flow equations can be set up and solved in a syntax directed

manner. When programs can contain goto statements or even the more disciplined break and

continue statements, the approach we have taken must be modified to take the actual control

paths into account.

Several approaches may be taken. The iterative method works arbitrary flow graphs.

Since the flow graphs obtained in the presence of break and continue statements are reducible,

such constraints can be handled systematically using the interval-based methods. However, the

syntax-directed approach need not be abandoned when break and continue statements are

allowed.

EFFICIENT DATA FLOW ALGORITHMS

CODE IMPROVIG TRANSFORMATIONS

Algorithms for performing the code improving transformations rely on data-flow

information. Here we consider common sub-expression elimination, copy propagation and

transformations for moving loop invariant computations out of loops and for eliminating

induction variables. Global transformations are not substitute for local transformations; both

must be performed.

Elimination of global common sub expressions:

• The available expressions data-flow problem discussed in the last section allows us to

determine if an expression at point p in a flow graph is a common sub-expression. The

CS8602-Compiler Design Department of CSE

31
2020 – 2021 Jeppiaar Institute of Technology

following algorithm formalizes the intuitive ideas presented for eliminating common sub-

expressions.

ALGORITHM: Global common sub expression elimination.

INPUT: A flow graph with available expression information. OUTPUT: A revised flow graph.

METHOD: For every statement s of the form x := y+z6 such that y+z is available at the

beginning of block and neither y nor r z is defined prior to statement s in that block, do the

following.

1. To discover the evaluations of y+z that reach s’s block, we follow flow graph edges,

searching backward from s’s block. However, we do not go through any block that

evaluates y+z. The last evaluation of y+z in each block encountered is an evaluation of

y+z that reaches s.

2. Create new variable u.

3. Replace each statement w: =y+z found in (1) by

a. u : = y + z

b. w : = u

4. Replace statement s by x:=u.

Some remarks about this algorithm are in order:

 The search in step(1) of the algorithm for the evaluations of y+z that reach statement s can also

be formulated as a data-flow analysis problem. However, it does not make sense to solve it for

all expressions y+z and all statements or blocks because too much irrelevant information is

gathered.

1. Not all changes made by algorithm are improvements. We might number of different

evaluations reaching s found in step (1), probably to one.

2. Algorithm will miss the fact that a*z and c*z must have the same value in

a :=x+y c :=x+y

vs

b :=a*zd :=c*z

Because this simple approach to common sub expressions considers only the literal

expressions themselves, rather than the values computed by expressions.

Copy propagation:

Various algorithms introduce copy statements such as x :=copies may also be generated

directly by the intermediate code generator, although most of these involve temporaries local to

CS8602-Compiler Design Department of CSE

32
2020 – 2021 Jeppiaar Institute of Technology

one block and can be removed by the dag construction. We may substitute y for x in all these

places, provided the following conditions are met every such use u of x.

1. Statement s must be the only definition of x reaching u.

2. On every path from s to including paths that go through u several times, there are no

assignments to y.

Condition (1) can be checked using ud-changing information. We shall set up a new

data-flow analysis problem in which in[B] is the set of copies s: x:=y such that every path from

initial node to the beginning of B contains the statement s, and subsequent to the last occurrence

of s, there are no assignments to y.

ALGORITHM: Copy propagation.

INPUT: a flow graph G, with ud-chains giving the definitions reaching block B, and with

c_in[B] representing the solution to equations that is the set of copies x:=y that reach block B

along every path, with no assignment to x or y following the last occurrence of x:=y on the path.

We also need ud-chains giving the uses of each definition.

OUTPUT: A revised flow graph.

METHOD: For each copy s : x:=y do the following:

1. Determine those uses of x that are reached by this definition of namely, s: x: =y.

2. Determine whether for every use of x found in (1) , s is in c_in[B], where B is the

block of this particular use, and moreover, no definitions of x or y occur prior to this use

of x within B. Recall that if s is in c_in[B]then s is the only definition of x that reaches

B.

3. If s meets the conditions of (2), then remove s and replace all u by y.

Detection of loop-invariant computations:

Ud-chains can be used to detect those computations in a loop that are loop-invariant, that

is, whose value does not change as long as control stays within the loop. Loop is a region

consisting of set of blocks with a header that dominates all the other blocks, so the only way to

enter the loop is through the header.

CS8602-Compiler Design Department of CSE

33
2020 – 2021 Jeppiaar Institute of Technology

If an assignment x := y+z is at a position in the loop where all possible definitions of y

and z are outside the loop, then y+z is loop-invariant because its value will be the same each

time x:=y+z is encountered. Having recognized that value of x will not change, consider v:=

x+w, where w could only have been defined outside the loop, then x+w is also loop-invariant.

ALGORITHM: Detection of loop-invariant computations.

INPUT: A loop L consisting of a set of basic blocks, each block containing sequence of three-

address statements. We assume ud-chains are available for the individual statements.

OUTPUT: the set of three-address statements that compute the same value each time executed,

from the time control enters the loop L until control next leaves L.

METHOD: we shall give a rather informal specification of the algorithm, trusting that the

principles will be clear.

1. Mark “invariant” those statements whose operands are all either constant or have all

their reaching definitions outside L.

2. Repeat step (3) until at some repetition no new statements are marked “invariant”.

3. Mark “invariant” all those statements not previously so marked all of whose operands

either are constant, have all their reaching definitions outside L, or have exactly one

reaching definition, and that definition is a statement in L marked invariant.

Performing code motion:

Having found the invariant statements within a loop, we can apply to some of them an

optimization known as code motion, in which the statements are moved to pre-header of the

loop. The following three conditions ensure that code motion does not change what the program

computes. Consider s: x: =y+z.

1. The block containing s dominates all exit nodes of the loop, where an exit of a loop is a

node with a successor not in the loop.

2. There is no other statement in the loop that assigns to x. Again, if x is a temporary

assigned only once, this condition is surely satisfied and need not be changed.

3. No use of x in the loop is reached by any definition of x other than will be satisfied,

normally, if x is temporary.

ALGORITHM: Code motion.

INPUT: A loop L with ud-chaining information and dominator information.

CS8602-Compiler Design Department of CSE

34
2020 – 2021 Jeppiaar Institute of Technology

OUTPUT: A revised version of the loop with a pre-header and some statements moved to the

pre-header.

METHOD:

1. Use loop-invariant computation algorithm to find loop-invariant statements.

2. For each statement s defining x found in step(1), check:

i) That it is in a block that dominates all exits of L,

ii) That x is not defined elsewhere in L, and

iii) That all uses in L of x can only be reached by the definition of x in statement s.

3. Move, in the order found by loop-invariant algorithm, each statement s found in (1)

and meeting conditions (2i), (2ii), (2iii) , to a newly created pre-header, provided any

operands of s that are defined in loop L have previously had their definition statements

moved to the pre-header.

To understand why no change to what the program computes can occur, condition (2i) and

(2ii) of this algorithm assure that the value of x computed at s must be the value of x after any

exit block of L. When we move s to a pre-header, s will still be the definition of x that reaches

the end of any exit block of L. Condition (2iii) assures that any uses of x within L did, and will

continue to, use the value of x computed by s.

Alternative code motion strategies:

The condition (1) can be relaxed if we are willing to take the risk that we may actually

increase the running time of the program a bit; of course, we never change what the program

computes. The relaxed version of code motion condition (1) is that we may move a statement s

assigning x only if:

1’. The block containing s either dominates all exists of the loop, or x is not used outside

the loop. For example, if x is a temporary variable, we can be sure that the value will be

used only in its own block.

If code motion algorithm is modified to use condition (1’), occasionally the running time

will increase, but we can expect to do reasonably well on the average. The modified algorithm

may move to pre-header certain computations that may not be executed in the loop. Not only

does this risk slowing down the program significan an error in certain circumstances.

Even if none of the conditions of (2i), (2ii), (2iii) of code motion algorithm are met by

an assignment x: =y+z, we can still take the computation y+z outside a loop. Create a new

CS8602-Compiler Design Department of CSE

35
2020 – 2021 Jeppiaar Institute of Technology

temporary t, and set t: =y+z in the pre-header. Then replace x: =y+z by x: =t in the loop. In

many cases we can propagate out the copy statement x: = t.

Maintaining data-flow information after code motion:

The transformations of code motion algorithm do not change ud-chaining information,

since by condition (2i), (2ii), and (2iii), all uses of the variable assigned by a moved statement s

that were reached by s are still reached by s from its new position. Definitions of variables used

by s are either outside L, in which case they reach the pre-header, or they are inside L, in which

case by step (3) they were moved to pre-header ahead of s.

If the ud-chains are represented by lists of pointers to pointers to statements, we can

maintain ud-chains when we move statement s by simply changing the pointer to s when we

move it. That is, we create for each statement s pointer ps, which always points to s. We put the

pointer on each ud-chain containing s. Then, no matter where we move s, we have only to

change ps , regardless of how many ud-chains s is on.

The dominator information is changed slightly by code motion. The pre-header is now

the immediate dominator of the header, and the immediate dominator of the pre-header is the

node that formerly was the immediate dominator of the header. That is, the pre-header is

inserted into the dominator tree as the parent of the header.

Elimination of induction variable:

A variable x is called an induction variable of a loop L if every time the variable x

changes values, it is incremented or decremented by some constant. Often, an induction variable

is incremented by the same constant each time around the loop, as in a loop headed by for i := 1

to 10. However, our methods deal with variables that are incremented or decremented zero, one,

two, or more times as we go around a loop. The number of changes to an induction variable

may even differ at different iterations.

A common situation is one in which an induction variable, say i, indexes an array, and

some other induction variable, say t, whose value is a linear function of i, is the actual offset

used to access the array. Often, the only use made of i is in the test for loop termination. We can

then get rid of i by replacing its test by one on t. We shall look for basic induction variables,

which are those variables i whose only assignments within loop L are of the form i := i+c or i-c,

where c is a constant.

ALGORITHM: Elimination of Induction variable

CS8602-Compiler Design Department of CSE

36
2020 – 2021 Jeppiaar Institute of Technology

INPUT: A loop L with reaching definition information, loop-in information and live variable

information.

OUTPUT: A revised loop. METHOD:

1. Consider each basic induction variable i whose only uses are to compute other

induction variables in its family and in conditional branches. Take some j in i’s family,

preferably one such that c and d in its triple are as simple as possible and modify each

test that i appears in to use j instead. We assume in the following that c is positive. A test

of the form ‘if i relop x goto B’, where x is not an induction variable, is replaced by

where, r is a new temporary. The case ‘if x relop i goto B’ is handled analogously. If

there are two induction variables i1 and i2 in the test if i1 relop i2 goto B, then we check

if both i1 and i2 can be replaced. The easy case is when we have j1 with triple and j2

with triple, and c1=c2 and d1=d2. Then, i1 relop i2 is equivalent to j1 relop j2.

2. Now, consider each induction variable j for which a statement j: =s was introduced.

First check that there can be no assignment to s between the introduced statement j:=s

and any use of j. In the usual situation, j is used in the block in which it is defined,

simplifying this check; otherwise, reaching definitions information, plus some graph

analysis is needed to implement the check. Then replace all uses of j by uses of s and

delete statement j: =s.

	PEEPHOLE OPTIMIZATION
	Redundant Loads And Stores:
	Unreachable Code:
	Algebraic Simplification:
	Reduction in Strength:
	Use of Machine Idioms:

