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UNIT IV RUN-TIME ENVIRONMENT AND CODE GENERATION   8 

Storage Organization, Stack Allocation Space, Access to Non-local Data on the Stack, Heap 

Management - Issues in Code Generation - Design of a simple Code Generator. 

 

The final phase in compiler model is the code generator. It takes as input an intermediate 

representation of the source program and produces as output an equivalent target program. The 

code generation techniques presented below can be used whether or not an optimizing phase 

occurs before code generation. 
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STORAGE  ORGANISATION 
 

 The  executing target program runs in its own logical address space in which each program  

value has a location. 
 The  management and organization of this logical address space is shared between the complier,  

operating system and target machine. The operating system maps the logical address into 

physical addresses, which are usually spread throughout memory. 

 

Typical subdivision of run-time memory: 

 

Code 
 

Static Data 
 

Stack 
 

 

free memory 
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 Run-time storage comes in blocks, where a byte is the smallest unit  of addressable memory. 

Four bytes form a machine word. Multibyte objects are stored in consecutive bytes and given the 

address of first byte. 

 This run-time storage might be subdivided to hold: 

1. The generated target code, 

2. Data objects, and 

3. A counterpart of the control stack to keep track of procedure activations. 

 The storage layout for data objects is strongly influenced by the addressing constraints of the target 

machine. 
 A character array of length 10 needs only enough bytes to hold 10 characters, a compiler may 

allocate 12 bytes to get alignment, leaving 2 bytes unused. 
 This unused space due to alignment considerations is referred to as padding. 
 The size of some program objects may be known at run time and may be placed in an area 

called static. 
 The dynamic areas used to maximize the utilization of space at run time are stack and heap. 

 
Activation records: 
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 Procedure calls and returns are usually managed by a run time stack called the control stack. 
 Each  live activation has an activation record on the control stack, with the root of the activation  

tree at the bottom, the latter activation has its record at the top of the stack. 


 The  contents of the activation record vary with the language being implemented. The diagram  

below shows the contents of activation record. 

 
 

Temporaries 

Local Data 

Machine Status 

Control Link 

Access Link 

Actual Parameters 

Return Value 

 
 
 
 

 Temporary values such as those arising from the evaluation of expressions. 
 Local data belonging to the procedure whose activation record this is. 
 A saved machine status, with information about the state of the machine just before the call to 

procedures. 
 An access link may be needed to locate data needed by the called procedure but found 

elsewhere. 
 A control link pointing to the activation record of the caller. 

 Space for the return value of the called functions, if any. Again, not  all called procedures return a 

value, and if one does, we may prefer to place that value in a register for efficiency. 

 The actual parameters used by the calling procedure. These are not placed in activation record but 

rather in registers, when possible, for greater efficiency. 

 

STORAGE ALLOCATION STRATEGIES  
The different storage allocation strategies are :  
1. Static allocation – lays out storage for all data objects at compile time   
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2. Stack allocation – manages the run-time storage as a stack.   
3. Heap allocation – allocates and deallocates storage as needed at run time from a data area known as 

heap.  

 
Static allocation  

 In static allocation, names are bound to storage as the program is compiled, so there is no need for  

a run-time support package. 
 Since  the bindings do not change at run-time, everytime a procedure is activated, its names  

are bound to the same storage locations. 

 Therefore  values of local names are retained across activations of a procedure. That is, when  

control returns to a procedure the values of the locals are the same as they were when  control left 

the last time. 

 From  the type of a name, the compiler decides the amount of storage for the name and decides  

where the activation records go. At compile time, we can fill in the addresses at which  the target 

code can find the data it operates on. 

 Some limitations of using static allocation: 

1. The size of a data object and constraints on its position in memory must be known at 

compile time. 

2. Recursive procedures are restricted, because all activations of a procedure use the same 

bindings for local names. 

3. Data structures cannot be created dynamically, since there is no mechanism for storage 

allocation at run time. 



FORTRAN use static storage allocation 

 .  
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Stack  allocation  

 

 All  compilers for languages that use procedures, functions or methods as units of user-defined  

actions manage at least part of their run-time memory as a stack. 
 Each  time a procedure is called , space for its local variables is pushed onto a stack, and when the 

procedure terminates, that space is popped off the stack. 
 

Calling sequences: 
 

 Procedures called are implemented in what is called as calling sequence, which consists of code 

that allocates an activation record on the stack and enters information into its fields. 

 A return sequence is similar to code to restore the state of machine so the calling procedure 

can continue its execution after the call. 
 The code in calling sequence is often divided between the calling procedure (caller) and the 

procedure it calls (callee). 
 When designing calling sequences and the layout of activation records, the following principles 

are helpful: 
 Values communicated between caller and callee are generally placed at the beginning of 

the callee’s activation record, so they are as close as possible to the caller’s activat ion 

record. 

 Fixed length items are generally placed in the middle. Such  items typically include the control 

link, the access link, and the machine status fields. 


 Items whose size may not be known early enough are placed at the end of the activation record. 

The most common example is dynamically sized array, where the value of one of the callee’s 

parameters determines the length of the array. 

 We must locate the top-of-stack pointer judiciously. A common approach is to have it point to the 

end of fixed-length fields in the activation record. Fixed-length data can then be accessed by fixed 

offsets, known to the intermediate-code generator, relative to the top-of-stack pointer. 
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 Division of tasks between caller and callee 

 

 The  calling sequence and its division between caller and callee are as follows. 



  The caller evaluates the actual parameters. 


 The caller stores a return address and the old value of top_sp into the callee’s activation 

record. The caller then increments the top_sp to the respective positions. 


 The callee saves the register values and other status information. 


 The callee initializes its local data and begins execution. 


 A suitable, corresponding return sequence is: 



 The callee places the return value next to the parameters. 


 Using the information in the machine-status field, the callee restores top_sp and other 

registers, and then branches to the return address that the caller placed in the status field. 


 Although top_sp has been decremented, the caller knows where the return value is, relative to the 

current value of top_sp; the caller therefore may use that value. 

 
Variable length data on stack: 
 

 The run-time memory management system must deal frequently with the allocation of space for 

objects, the sizes of which are not known at the compile time, but which are local to a procedure 

and thus may be allocated on the stack. 

 The reason to prefer placing objects on the stack is that we avoid the expense of garbage collecting 
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their space. 
 The same scheme works for objects of any type if they are local to the procedure called and have a 

size that depends on the parameters of the call. 

 
 



 

Heap allocation  
Stack allocation strategy cannot be used if either of the following is possible :  
1. The values of local names must be retained when an activation ends.   
2. A called activation outlives the caller.  

 

 Heap allocation parcels out pieces of contiguous storage, as needed for activation records or 

other objects. 
 Pieces may be deallocated in any order, so over the time the heap will consist of alternate 

areas that are free and in use. 
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Position in the Activation records in the heap Remarks 
 

activation tree        
 

          
 

 s       Retained activation 
 

       s    record for r 
 

         
 

r q ( 1 ,  9)     control link   
 

          
 

       r    
 

      
 control link 

  
 

        
 

          
 

 q(1,9) 

 

 control link 
 
 
 
 
 
 
 

 The record for an activation of procedure r is retained when the activation ends. 


 Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically. 


 If the retained activation record for r is deallocated, there will be free space in the heap 

between the activation records for s and q. 

  For large blocks of storage use the heap manager.This approach results in fast allocation 

and deallocation of small amounts of storage, since taking and returning a block from 

linked list are efficient operations. 

 

 

ISSUES IN  THE DESIGN OF A CODE GENERATOR 
 
The following  issues arise during the code generation phase : 
 

1. Input to  code generator  

2. Target  program  

3. Memory  management  

4. Instruction  selection  

5. Register  allocation  
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6. Evaluation  order  

 

1. Input to  code generator:   
 The input  to the code generation consists of the intermediate representation of the source program  

produced by front end , together with information in the symbol table to determine  run-time 

addresses of the data objects denoted by the names in the intermediate representation. 


 Intermediate representation can be : 

a. Linear representation such as postfix notation  

b. Three address representation such as quadruples  

c. Virtual machine representation such as stack machine code  

d. Graphical representations such as syntax trees and dags.  

 

 Prior to code generation, the front end must be scanned, parsed and translated into intermediate 

representation along with necessary type checking. Therefore, input to code generation is assumed 

to be error-free. 

2. Target program:   

 The output of the code generator is the target program. The output may be : 
a. Absolute machine language   

- It can be placed in a fixed memory location and can be executed immediately.  

 

b. Relocatable machine language   
- It allows subprograms to be compiled separately.  

 
c. Assembly language   

- Code generation is made easier.  
 
3. Memory management:   

 Names in the source program are mapped to addresses of data objects in run-time memory by 

the front end and code generator. 


 It makes use of symbol table, that is, a name in a three-address statement refers to a symbol-

table entry for the name. 


 Labels in three-address statements have to be converted to addresses of instructions. For 
example, 

j :gotoigenerates jump instruction as follows :

 ifi<j, a backward jump instruction with target address equal to location of code for 

quadruple i is generated. 

 ifi>j, the jump is forward. We must store on a list for quadruplei the  location of the 

first machine instruction generated for quadruplej. When iis processed, the machine 

locations for all instructions that forward jumps to i are filled. 


4. Instruction  selection:   
 The  instructions of target machine should be complete and uniform. 



  Instruction speeds and machine idioms are important factors when efficiency of target  program 
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is considered. 


 The  quality of the generated code is determined by its speed and size. 



 The  former statement can be translated into the latter statement as shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Register allocation   

 Instructions involving register operands are shorter and faster than those involving operands in 

memory. 


 The use of registers is subdivided into two subproblems : 

Register allocation – the set of variables that will reside in registers at a point inthe program is selected. 

 Register assignment – the specific register that a  variable will reside in ispicked. 



 Certain machine requires even-odd register pairs for some operands and results. For 
example , consider the division instruction of the form : 

D  x, y 
 

where, x – dividend even register in even/odd register pair y – 

divisor  
even register holds the remainder odd 

register holds the quotient 
 
6. Evaluation order   

 The order in which the computations are performed can affect the efficiency of the target code. 

Some computation orders require fewer registers to hold intermediate results than others. 

 

A SIMPLE  CODE GENERATOR 
 

 A code  generator generates target code for a sequence of three- address statements and effectively 

uses registers to store operands of the statements.

 For example: consider the three-address statement a := b+c 

It can have the following sequence of codes: 
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ADD Rj, Ri Cost = 1 // if Ri contains b and Rj contains c 
 

(or) 
 

ADD c, Ri Cost = 2 // if c is in a memory location 
 

(or) 
 

MOV c, Rj Cost = 3 // move c from memory to Rj and add 
 

ADD Rj, Ri 

Register and Address Descriptors: 
 

 A register descriptor is used to keep track of what is currently in each registers. The register 

descriptors show that initially all the registers are empty. 
 An address descriptor stores the location where the current value of the name can be found at run 

time.

 

A code-generation algorithm: 

 
The algorithm takes as input a sequence of three -address statements constituting a basic block. For each 

three-address statement of the form x : = y op z, perform the following actions: 
 
1. Invoke a function getreg to determine the location L where the result of the computation y op z should 

be stored.  
 
2. Consult the address descriptor for y to determine y’, the current location of y. Prefer the register for 

y’ if the value of y is currently both in memory and a register. If the value of y is not already in L, 

generate the instruction MOV y’ , L to place a copy of y in L.  
 
3. Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a register to a 

memory location if z is in both. Update the address descriptor of x to indicate that x is in location 

L. If x is in L, update its descriptor and remove x from all other descriptors.  
 
4. If the current values of y or z have no next uses, are not live on exit from the block, and are in 

registers, alter the register descriptor to indicate that, after execution of x : = y op z , those registers 

will  no longer contain y or z.  

 

 

The algorithmic sequence of getreg function can be, 

 

1. if x value is in register that register is returned. 

2. If  (1) fails, new register is returned. 

3. If (2) fails, and the operation needs a special register, that register value is temporarily moved to 

the memory and the register is returned. 

4. If (3) fails, finally memory location is returned. 
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Generating  Code for Assignment Statements: 
 

 The  assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-address  code 
sequence:  

t : = a – b          u : = 

a – c         v : = t + u          

d : = v + u 

with d live at  the end.  
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Code sequence  for the example is: 

 

Statements  Code Generated  Register descriptor  Address descriptor 
 

    
 

   Register empty  
 

    
 

t : = a - b MOV a, R0 R0 contains t t in R0 
 

 SUB b, R0    
 

     
 

u : = a - c MOV a , R1 R0 contains t t in R0 
 

 SUB c , R1 R1 contains u u in R1 
 

     
 

v : =t + u ADD R1, R0 R0 contains v u in R1 
 

  R1 contains u v in R0 
 

     
 

d : = v + u ADD R1, R0 R0 contains d d in R0 
 

 
MOV R0, d 

  d in R0 and memory 
 

    
 

     
 

 

Generating Code for Indexed Assignments 

 

The table shows the code sequences generated for the indexed assignment statements a : = b [ i ] 

and a [ i ] : = b 

 

Statements Code Generated 
  

a : = b[i] MOV b(Ri), R 

  

a[i] : = b MOV b, a(Ri) 

  

 

 

 

 

Generating Code for Pointer Assignments 

The table shows the code sequences generated for the pointer assignments a : = *p and *p : = a 

 Statements  Code Generated 
 

      
 

 a : = *p  MOV *Rp, a 
 

      
 

 *p : = a  MOV a, *Rp 
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 Generating  Code for Conditional Statements    
 

       
 

 

Statement 
  

  Code 

 
   

 
 

 

       
 

 

   if x < y goto z 

 CMP x, y 

 CJ<z 

 /* jump to z if condition code 

 is negative */ 

 

 
 

 
 

 
 

 
 

 
 

  x : = y +z if x <0 goto z  MOV y, R0  
 ADD z, R0 

MOV R0,x 

 CJ<Z 
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