
CS8602-Compiler Design Department of CSE

1

2020 – 2021 Jeppiaar Institute of Technology

UNIT III INTERMEDIATE CODE GENERATION 8

Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate

Languages: Syntax Tree, Three Address Code, Types and Declarations, Translation of

Expressions, Type Checking.

SYNTAX – DIRECTED TRANSLATION

Syntax-Directed Translations

• Translation of languages guided by CFGs

• Information associated with programming language constructs

– Attributes attached to grammar symbols

– Values of attributes computed by “semantic rules” associated with grammar

productions

• Two notations for associating semantic rules

– Syntax-directed definitions

– Translation schemes

Semantic Rules

• Semantic rules perform various activities:

– Generation of code

– Save information in a symbol table

– Issue error messages

– Other activities

• Output of semantic rules is the translation of the token stream

Conceptual View

• Implementations do not need to follow outline literally

• Many “special cases” can be implemented in a single pass

SYNTAX DIRECTED DEFINITIONS

 Syntax directed definition is a generalization of a context free grammar in which

each grammar symbol has an associated set of attributes, partitioned into two subsets

called synthesized attributes and inherited attributes.

CS8602-Compiler Design Department of CSE

2

2020 – 2021 Jeppiaar Institute of Technology

Attributes

• Each grammar symbol (node in parse tree) has attributes attached to it ex: a string, a

number, a type, a memory location etc.

• Values of a Synthesized attributes at a node is computed from the values of attributes at

the children of that node in the parse tree.

• Values of a Inherited attributes at a node is computed from the values of attributes at the

siblings and parent of that node.

 A dependency graph represents dependencies between attributes

A parse tree showing the values of attributes at each node is an annotated parse tree

• Each semantic rule for production A -> α has the form

 b := f(c1, c2, …, ck)

– f is a function

– b may be a synthesized attribute of A or

– b may be an inherited attribute of one of the grammar symbol on the right side of

the production

– c1, c2, …, ck are attributes belonging to grammar symbols of production

• An attribute grammar is one in which the functions in semantic rule cannot have side

effects

NOTE: a semantic rule may have side effects ex: printing a value or updating a global

variable.

S-attributed Definitions

• Synthesized attributes are used extensively in practice

• S-attributed definition: A syntax-directed definition using only synthesized attributes

• Parse tree can be annotated by evaluation nodes during a single bottom up pass

S-attributed Definition Example

Desk calculator

Production Semantic Rules

L  E n print(E.val)

E  E
1
 + T E.val := E

1
.val + T.val

E  T E.val := T.val

T  T
1
 * F T.val := T

1
.val * F.val

T  F T.val := F.val

CS8602-Compiler Design Department of CSE

3

2020 – 2021 Jeppiaar Institute of Technology

F  (E) F.val := E.val

F  digit F.val := digit.lexval

Annotated Parse Tree Example

NOTE

In a syntax directed definations, terminals are assumed to have

 Synthesized attributes only,as the definations does not provide any semantic rules for

terminals.values for attributes of terminals are usually supplied by the lexical

analyser.Start symbol is assumed not to have any inherited attribute otherwise stated.

Inherited Attributes

• Inherited Attributes:

– Value at a node in a parse tree depends

 on attributes of parent and/or siblings

– Convenient for expressing dependencies of programming language constructs on

context

• It is always possible to avoid inherited attributes, but they are often convenient

CS8602-Compiler Design Department of CSE

4

2020 – 2021 Jeppiaar Institute of Technology

Inherited Attributes Example

Production Semantic Rules

D  T L L.in := T.type

T  int T.type := integer

T  real T.type := real

L  L
1
, id

L
1
.in := L.in

addtype(id.entry, L.in)

L  id addtype(id.entry, L.in)

Annotated Inherited Attributes

Dependency Graphs

• Dependency graph:

– Depicts interdependencies among synthesized and inherited attributes

– Includes dummy nodes for procedure calls

• Numbered with a topological sort

CS8602-Compiler Design Department of CSE

5

2020 – 2021 Jeppiaar Institute of Technology

– If mi  mj is an edge from mi to mj, then mi appears before mj in the ordering

– Gives valid order to evaluate semantic rules

Creating a Dependency Graph

for each node n in parse tree

 for each attribute a of grammar symbol at n

 construct a node in dependency graph for a

for each node n in parse tree

 for each semantic rule b := f(c1, c2, …, ck)

 associated with production used at n

 for i := 1 to k

 construct edge from node for ci to node for b

Example(inherited attribute)

Two sub-classes of the syntax-directed definitions:

– S-Attributed Definitions: only synthesized attributes used in the syntax-directed

definitions.

– L-Attributed Definitions: in addition to synthesized attributes, we may also use

inherited attributes in a restricted fashion.

 To implement S-Attributed Definitions and L-Attributed Definitions we can evaluate

semantic rules in a single pass during the parsing.

 Implementations of S-attributed Definitions are a little bit easier than

implementations of L-Attributed Definitions

BOTTOM-UP EVALUATION OF S-ATTRIBUTED DEFINITIONS

• We put the values of the synthesized attributes of the grammar symbols into a parallel

stack.

CS8602-Compiler Design Department of CSE

6

2020 – 2021 Jeppiaar Institute of Technology

– When an entry of the parser stack holds a grammar symbol X (terminal or non-

terminal), the corresponding entry in the parallel stack will hold the synthesized

attribute(s) of the symbol X.

• We evaluate the values of the attributes during reductions.

Bottom-Up Evaluation Example

Production Code Fragment

(1) L  E \n Print(val[top])

(2) E  E
1
 + t val[ntop] := val[top-2] + val[top]

(3) E  T

(4) T  `T
1
 * F val[ntop] := val[top-2] * val[top]

(5) T  F

(6) F  (E) val[ntop] := val[top-1]

(7) F  digit

Bottom-Up Evaluation Example

Input State Val Rule

3*5+4\n --- ---

*5+4\n 3 3

*5+4\n F 3 (7)

*5+4\n T 3 (5)

5+4\n T* 3_

CS8602-Compiler Design Department of CSE

7

2020 – 2021 Jeppiaar Institute of Technology

+4\n T*5 3_5

+4\n T*F 3_5 (7)

+4\n T 3_5 (4)

+4\n E 15 (3)

4\n E+ 15_

\n E+4 15_4

\n E+F 15_4 (7)

\n E+T 15_4 (5)

\n E 19 (2)

E\n 19_

L 19 (1)

TOP DOWN EVALUATION OF L-ATTRIBUTED DEFINITION

A top-down parser can evaluate attributes as it parses if the attribute values can be computed in a

top-down fashion. Such attribute grammars are termed L-Attributed. First, we introduce a

new type of symbol called an action symbol. Action symbols appear in the grammar in any place

a terminal or nonterminal may appear. They may also have their own attributes. They may,

however, be pushed onto their own stack, called a semantic stack or attribute stack.

 We illustrate action symbols using the notation "<>" which indicates that the symbol within

the brackets is to be pushed onto the semantic stack when it appears at the top of the parse stack.

By inserting this action in appropriate places, we will create a translator which converts from

infix expressions to postfix expressions.

CS8602-Compiler Design Department of CSE

8

2020 – 2021 Jeppiaar Institute of Technology

We parse and translate a + b * c. The top is on the left for both stacks.

When the semantic stack is popped, the translated string is:

 a b c * +

the input string translated to postfix. In Example 6, the action symbol did not have any attached

attributes.

 The BNF in Example 6 is in LL(1) form. This is necessary for the top-down parse.

CS8602-Compiler Design Department of CSE

9

2020 – 2021 Jeppiaar Institute of Technology

 The formal definition of an L-attributed grammars is as follows. An attribute grammar is L-

attributed if and only if for each production X0 -> X1 X2. . . Xi. . . Xn,

 (1) {Xi.inh} = f ({Xj.inh} , {Xk.att}) i, j >= 1, 0<=k<i

 (2) {X0.syn} = f ({X0.inh} , {Xj.att}) 1<=j<=n

 (3) {ActionSymbol.Syn} = f ({ActionSymbol.Inh})

 (1) says that each inherited attribute of a symbol on the right-hand side depends only on

inherited attributes of the right-hand side and arbitrary attributes of the symbols to the left of the

given right-hand side symbol.

 (2) says that each synthesized attributes of the left-hand-side symbol depends only on

inherited attributes of that symbol and arbitrary attributes of right-hand-side symbols.

 (2) says that the synthesized attributes of any action symbol depend only on the inherited

attributes of the action symbol.

INTRODUCTION – Intermediate Code generator

The front end translates a source program into an intermediate representation from

which the back end generates target code.

Benefits of using a machine-independent intermediate form are:

1. Retargeting is facilitated. That is, a compiler for a different machine can be created

by attaching a back end for the new machine to an existing front end.

2. A machine-independent code optimizer can be applied to the intermediate representation.

Position of intermediate code generator

 intermediate

parser static intermediate code

 checker code generator code generator

INTERMEDIATE LANGUAGES

Three ways of intermediate representation:

 Syntax tree 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

10

2020 – 2021 Jeppiaar Institute of Technology


 Postfix notation 


 Three address code 

The semantic rules for generating three-address code from common programming language

constructs are similar to those for constructing syntax trees or for generating postfix notation.

Graphical Representations:

SYNTAX TREE:

A syntax tree depicts the natural hierarchical structure of a source program. A dag

(Directed Acyclic Graph) gives the same information but in a more compact way because

common subexpressions are identified. A syntax tree and dag for the assignment statement a : =

b * - c + b * - c are as follows:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

11

2020 – 2021 Jeppiaar Institute of Technology

 assign assign

 a + a +

 * * *

b uminus b uminus b uminus

 c c c

 (a) Syntax tree (b) Dag

Postfix notation:

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of

the tree in which a node appears immediately after its children. The postfix notation for the

syntax tree given above is

a b c uminus * b c uminus * + assign

Syntax-directed definition for construction of Syntax Tree:

Syntax trees for assignment statements are produced by the syntax-directed definition.

Non-terminal S generates an assignment statement. The two binary operators + and * are

examples of the full operator set in a typical language. Operator associativities and precedences

are the usual ones, even though they have not been put into the grammar. This definition

constructs the tree from the input a : = b * - c + b* - c.

PRODUCTION SEMANTIC RULE

S  id : = E S.nptr : = mknode(‘assign’,mkleaf(id, id.place), E.nptr)

E  E1 +E2 E.nptr : = mknode(‘+’, E1.nptr, E2.nptr)

E  E1 * E2 E.nptr : = mknode(‘*’, E1.nptr, E2.nptr)

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

12

2020 – 2021 Jeppiaar Institute of Technology

E  - E1 E.nptr : = mknode(‘uminus’, E1.nptr)

E  (E1) E.nptr : = E1.nptr

E  id E.nptr : = mkleaf(id, id.place)

Syntax-directed definition to produce syntax trees for assignment statements

CS8602-Compiler Design Department of CSE

13

2020 – 2021 Jeppiaar Institute of Technology

The token id has an attribute place that points to the symbol-table entry for the identifier.

A symbol-table entry can be found from an attribute id.name, representing the lexeme

associated with that occurrence of id. If the lexical analyzer holds all lexemes in a single array of

characters, then attribute name might be the index of the first character of the lexeme.

Two representations of the syntax tree are as follows. In (a) each node is represented as a

record with a field for its operator and additional fields for pointers to its children. In (b), nodes

are allocated from an array of records and the index or position of the node serves as the pointer

to the node. All the nodes in the syntax tree can be visited by following pointers, starting from

the root at position 10.

Two representations of the syntax tree

0

 a id b

 assign

1

id

c

id

a

 2

 uminus2

 1

 3

 *

 0

2

 +

 4

 id

 b

 5

 id

 c

*

 *

 6

 uminus

 5

id

 b

 id

 b

 7 * 4 6

 8 +

 3 7

uminus

 uminus

 9 id

 a

id c id c

 10

 assign 9

8

 (a) (b)

THREE-ADDRESS CODE:

Three-address code is a sequence of statements of the general form

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

14

2020 – 2021 Jeppiaar Institute of Technology

x : = y op z

where x, y and z are names, constants, or compiler-generated temporaries; op stands for any

operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-

valued data. Thus a source language expression like x+ y*z might be translated into asequence

t1 : = y * z

 t2 : = x + t1

where t1 and t2 are compiler-generated temporary names.

CS8602-Compiler Design Department of CSE

15

2020 – 2021 Jeppiaar Institute of Technology

Advantages of three-address code:

 The unraveling of complicated arithmetic expressions and of nested flow-of-control

statements makes three-address code desirable for target code generation and

optimization. 


 The use of names for the intermediate values computed by a program allows three-

address code to be easily rearranged – unlike postfix notation. 

Three-address code is a linearized representation of a syntax tree or a dag in which

explicit names correspond to the interior nodes of the graph. The syntax tree and dag are

represented by the three-address code sequences. Variable names can appear directly in three-

address statements.

Three-address code corresponding to the syntax tree and dag given above

t1 : = - c t1 : = -c

t2 : = b * t1 t2 : = b * t1

t3 : = - c t5 : = t2 + t2

t4 : = b * t3 a : = t5

t5 : = t2 + t4

a : = t5

(a) Code for the syntax tree (b) Code for the dag

The reason for the term “three-address code” is that each statement usually contains three

addresses, two for the operands and one for the result.

Types of Three -Address Statements:

The common three-address statements are:

1. Assignment statements of the form x : = y op z, where op is a binary arithmetic or logical

operation.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

16

2020 – 2021 Jeppiaar Institute of Technology

2. Assignment instructions of the form x : = op y, where op is a unary operation. Essential

unary operations include unary minus, logical negation, shift operators, and conversion

operators that, for example, convert a fixed-point number to a floating-point number.

3.Copy Statements of the form x : = y where the value of y is assigned to x.

3. The unconditional jump goto L. The three-address statement with label L is the next to be

executed.

4. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (

<, =, >=, etc.) to x and y, and executes the statement with label L next if x stands in relation

CS8602-Compiler Design Department of CSE

17

2020 – 2021 Jeppiaar Institute of Technology

relop to y. If not, the three-address statement following if x relop y goto L is executed next,

as in the usual sequence.

6. param x and call p, n for procedure calls and return y, where y representing a returned value

is optional. For example,

param x1

param x2

. . .
param xn

call p,n

generated as part of a call of the procedure p(x1, x2, …. ,xn).

7. Indexed assignments of the form x : = y[i] and x[i] : = y.

8. Address and pointer assignments of the form x : = &y , x : = *y, and *x : = y.

Syntax-Directed Translation into Three-Address Code:

When three-address code is generated, temporary names are made up for the interior

nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary

t, followed by the assignment id.place : = t.

Given input a : = b * - c + b * - c, the three-address code is as shown above.

The synthesized attribute S.code represents the three-address code for the assignment S.

The nonterminal E has two attributes :

1. E.place, the name that will hold the value of E , and
2. E.code, the sequence of three-address statements evaluating E.

Syntax -directed definition to produce three-address code for assignments

PRODUCTION SEMANTIC RULES

S  id : = E S.code : = E.code || gen(id.place ‘:=’ E.place)

E  E1 + E2 E.place := newtemp;

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place)

E  E1 * E2 E.place := newtemp;

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

18

2020 – 2021 Jeppiaar Institute of Technology

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place)

E  - E1 E.place := newtemp;

 E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place)

E  (E1) E.place : = E1.place;

 E.code : = E1.code

E  id E.place : = id.place;

 E.code : = ‘ ‘

CS8602-Compiler Design Department of CSE

19

2020 – 2021 Jeppiaar Institute of Technology

 The function newtemp returns a sequence of distinct names t1,t2,….. in response to

successive calls. 


 Notation gen(x ‘:=’ y ‘+’ z) is used to represent three-address statement x := y + z.

Expressions appearing instead of variables like x, y and z are evaluated when passed to

gen, and quoted operators or operand, like ‘+’ are taken literally. 


 Flow-of–control statements can be added to the language of assignments. The code for S

whileEdoS1is generated using new attributesS.beginandS.afterto mark

the firststatement in the code for E and the statement following the code for S, respectively. 

 The function newlabel returns a new label every time it is called. 


 We assume that a non-zero expression represents true; that is when the value of E

becomes zero, control leaves the while statement. 

Write three address code for the below expression.

 a=b+c*d-e/f

 t1=c*d

 t2=e/f

 t3=b+t1

 t4=t3-t2

 a=t4

Implementation of Three-Address Statements:

A three-address statement is an abstract form of intermediate code. In a compiler,

these statements can be implemented as records with fields for the operator and the operands.

Three such representations are:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

20

2020 – 2021 Jeppiaar Institute of Technology

 Quadruples 


 Triples 


 Indirect triples 

CS8602-Compiler Design Department of CSE

21

2020 – 2021 Jeppiaar Institute of Technology

Quadruples:

 A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result. 



 The op field contains an internal code for the operator. The three-address statement x : =

y op z is represented by placing y in arg1, z in arg2 and x in result. 


 The contents of fields arg1, arg2 and result are normally pointers to the symbol-table

entries for the names represented by these fields. If so, temporary names must be entered

into the symbol table as they are created. 

Triples:

 To avoid entering temporary names into the symbol table, we might refer to a temporary

value by the position of the statement that computes it. 


 If we do so, three-address statements can be represented by records with only three

fields: op, arg1 and arg2. 


 The fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table

or pointers into the triple structure (for temporary values). 


 Since three fields are used, this intermediate code format is known as triples. 

 op arg1 arg2 result

(0) uminus C t1

(1) * B t1 t2

(2) uminus C t3

(3) * B t3 t4

(4) + t2 t4 t5

(5) : = t3 a

(a) Quadruples

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of

CSE

22

2020 – 2021 Jeppiaar Institute of

Technology

 op arg1 arg2

 (0) uminus c

(1) * b (0)

(2) uminus c

(3) * b (2)

(4) + (1) (3)

(5) assign a (4)

(b) Triples

Quadruple and triple representation of three-address statements given above

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

23

2020 – 2021 Jeppiaar Institute of Technology

A ternary operation like x[i] : = y requires two entries in the triple structure as shown as below

while x : = y[i] is naturally represented as two operations.

 op arg1 arg2

(0) [] = X i

(1) assign (0) y

(a) x[i] : = y

 op arg1 arg2

(0) = [] y i

(1) assign x (0)

(b) x : = y[i]

Indirect Triples:

 Another implementation of three-address code is that of listing pointers to triples,

rather than listing the triples themselves. This implementation is called indirect triples. 


 For example, let us use an array statement to list pointers to triples in the desired

order. Then the triples shown above might be represented as follows: 

 statement op arg1 arg2

(0) (14) (14) uminus c

(1) (15) (15) * b (14)

(2) (16) (16) uminus c

(3) (17) (17) * b (16)

(4) (18) (18) + (15) (17)

(5) (19) (19) assign a (18)

Indirect triples representation of three-address statements

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

24

2020 – 2021 Jeppiaar Institute of Technology

DECLARATIONS

As the sequence of declarations in a procedure or block is examined, we can lay out

storage for names local to the procedure. For each local name, we create a symbol-table entry

with information like the type and the relative address of the storage for the name. The relative

address consists of an offset from the base of the static data area or the field for local data in an

activation record.

CS8602-Compiler Design Department of CSE

25

2020 – 2021 Jeppiaar Institute of Technology

Declarations in a Procedure:
The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a

single procedure to be processed as a group. In this case, a global variable, say offset, can

keep track of the next available relative address.

In the translation scheme shown below:

 Nonterminal P generates a sequence of declarations of the form id : T. 



 Before the first declaration is considered, offset is set to 0. As each new name is seen ,

that name is entered in the symbol table with offset equal to the current value of offset,

and offset is incremented by the width of the data object denoted by that name. 


 The procedure enter(name, type, offset) creates a symbol-table entry for name, gives its

type type and relative address offset in its data area. 


 Attribute type represents a type expression constructed from the basic types integer and

real by applying the type constructors pointer and array. If type expressions are

represented by graphs, then attribute type might be a pointer to the node representing a

type expression. 


 The width of an array is obtained by multiplying the width of each element by the

number of elements in the array. The width of each pointer is assumed to be 4. 

 Computing the types and relative addresses of declared names

P  D { offset : = 0 }

D  D ; D

D  id : T { enter(id.name, T.type, offset);
offset : = offset + T.width }

T  integer { T.type : = integer;
T.width : = 4 }

T  real { T.type : = real;
T.width : = 8 }

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

26

2020 – 2021 Jeppiaar Institute of Technology

T  array [num] of T1 { T.type : = array(num.val, T1.type);

T.width : = num.val X T1.width }

T  ↑ T1 { T.type : = pointer (T1.type);
T.width : = 4 }

CS8602-Compiler Design Department of CSE

27

2020 – 2021 Jeppiaar Institute of Technology

Keeping Track of Scope Information:

When a nested procedure is seen, processing of declarations in the enclosing procedure is

temporarily suspended. This approach will be illustrated by adding semantic rules to the

following language:

P  D

D  D ; D | id : T | proc id ; D ; S

One possible implementation of a symbol table is a linked list of entries for names.

A new symbol table is created when a procedure declaration D  proc id D1;S is seen,

and entries for the declarations in D1 are created in the new table. The new table points back to

the symbol table of the enclosing procedure; the name represented by id itself is local to the

enclosing procedure. The only change from the treatment of variable declarations is that the

procedure enter is told which symbol table to make an entry in.

For example, consider the symbol tables for procedures readarray, exchange, and

quicksort pointing back to that for the containing procedure sort, consisting of the entire

program. Since partition is declared within quicksort, its table points to that of quicksort.

 Symbol tables for nested procedures

 sort

 nil header

 a

 x

 readarray to readarray

 exchange to exchange

 quicksort

 readarray exchange quicksort

 header

header

header

 i k

 v

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

28

2020 – 2021 Jeppiaar Institute of Technology

 partition

 partition

 header

 i

 j

CS8602-Compiler Design Department of CSE

29

2020 – 2021 Jeppiaar Institute of Technology

The semantic rules are defined in terms of the following operations:

1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The

argument previous points to a previously created symbol table, presumably that for the

enclosing procedure.

2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed

to by table. Again, enter places type type and relative address offset in fields within the entry.

3. addwidth(table, width) records the cumulative width of all the entries in table in the header

associated with this symbol table.

4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table

pointed to by table. The argument newtable points to the symbol table for this procedure

name.

Syntax directed translation scheme for nested procedures

P  M D { addwidth (top(tblptr) , top (offset));

 pop (tblptr); pop (offset) }

M  ɛ { t : = mktable (nil);

 push (t,tblptr); push (0,offset) }

D  D1 ; D2

D  proc id ; N D1 ; S { t : = top (tblptr);

 addwidth (t, top (offset));
 pop (tblptr); pop (offset);
 enterproc (top (tblptr), id.name, t) }

D  id : T { enter (top (tblptr), id.name, T.type, top (offset));

top (offset) := top (offset) + T.width }

N  ɛ { t := mktable (top (tblptr));

push (t, tblptr); push (0,offset) }

 The stack tblptr is used to contain pointers to the tables for sort, quicksort, and

partition when the declarations in partition are considered. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

30

2020 – 2021 Jeppiaar Institute of Technology



 The top element of stack offset is the next available relative address for a local of

the current procedure. 


 All semantic actions in the subtrees for B and C in 

A  BC {actionA}

are done before actionA at the end of the production occurs. Hence, the action associated

with the marker M is the first to be done.

CS8602-Compiler Design Department of CSE

31

2020 – 2021 Jeppiaar Institute of Technology

 The action for nonterminal M initializes stack tblptr with a symbol table for the

outermost scope, created by operation mktable(nil). The action also pushes relative

address 0 onto stack offset. 


 Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new

symbol table. The argument top(tblptr) gives the enclosing scope for the new table. 


 For each variable declaration id: T, an entry is created for id in the current symbol table.

The top of stack offset is incremented by T.width. 


 When the action on the right side of D  proc id; ND1; S occurs, the width of all

declarations generated by D1 is on the top of stack offset; it is recorded using addwidth.

Stacks tblptr and offset are then popped. 


At this point, the name of the enclosed procedure is entered into the symbol table of

its enclosing procedure. 

BOOLEAN EXPRESSIONS

Boolean expressions have two primary purposes. They are used to compute logical

values, but more often they are used as conditional expressions in statements that alter the flow

of control, such as if-then-else, or while-do statements.

Boolean expressions are composed of the boolean operators (and, or, and not) applied

to elements that are boolean variables or relational expressions. Relational expressions are of the

form E1 relop E2, where E1 and E2 are arithmetic expressions.

Here we consider boolean expressions generated by the following grammar :

E  E or E | E and E | not E | (E) | id relop id | true | false

Methods of Translating Boolean Expressions:

There are two principal methods of representing the value of a boolean expression. They are :

 To encode true and false numerically and to evaluate a boolean expression analogously

to an arithmetic expression. Often, 1 is used to denote true and 0 to denote false. 


 To implement boolean expressions by flow of control, that is, representing the value of a

boolean expression by a position reached in a program. This method is particularly

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

32

2020 – 2021 Jeppiaar Institute of Technology

convenient in implementing the boolean expressions in flow-of-control statements, such

as the if-then and while-do statements. 

Numerical Representation

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from

left to right, in a manner similar to arithmetic expressions.

For example :

The translation for

a or b and not c is the three-address sequence
t1 : = not c t2

: = b and t1 t3

: = a or t2

A relational expression such as a < b is equivalent to the conditional statement

if a < b then 1 else 0

which can be translated into the three-address code sequence (again, we arbitrarily

start statement numbers at 100) :

100 : if a < b goto 103
101 : t : = 0
102 : goto 104
103 : t : = 1
104 :

 Translation scheme using a numerical representation for booleans

E  E1 or E2 { E.place : = newtemp;

E  E1 and E2

emit(E.place ‘: =’ E1.place ‘or’E2.place)}

{ E.place : = newtemp;

E  not E1

emit(E.place ‘: =’ E1.place ‘and’E2.place)}

{ E.place : = newtemp;

 emit(E.place ‘: =’ ‘not’ E 1.place)}

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

33

2020 – 2021 Jeppiaar Institute of Technology

E  (E1) { E.place : = E1.place }

E  id1 relop id2 { E.place : = newtemp;

 emit(‘if’ id1.place relop.op id2.place ‘goto’ nextstat + 3);

 emit(E.place ‘: =’ ‘0’);

 emit(‘goto’ nextstat +2);

 emit(E.place ‘: =’ ‘1’) }

E  true { E.place : = newtemp;

E false

 emit(E.place ‘: =’ ‘1’) }

 { E.place : = newtemp;

 emit(E.place ‘: =’ ‘0’) }

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

34

2020 – 2021 Jeppiaar Institute of Technology

Short-Circuit Code:

We can also translate a boolean expression into three-address code without generating code

for any of the boolean operators and without having the code necessarily evaluate the entire

expression. This style of evaluation is sometimes called “short-circuit” or “jumping” code. It is

possible to evaluate boolean expressions without generating code for the boolean operators and, or,

and not if we represent the value of an expression by a position in the code sequence.

Translation of a < b or c < d and e < f

100 : if a < b goto 103 107 : t2 : = 1

101 : t1 : = 0 108 : if e < f goto 111

102 : goto 104 109 : t3 : = 0

103 : t1 : = 1 110 : goto 112

104 : if c < d goto 107 111 : t3 : = 1

105 : t2 : = 0 112 : t4 : = t2 and t3

106 : goto 108 113 : t5 : = t1 or t4

Control-Flow Translation of Boolean Expressions:

 With the help of control flow mechanism, the Boolean operator and conditional statements in

which Boolean expression are part of it are translated into three address code as follows.

 Syntax-directed definition to produce three-address code for booleans

 PRODUCTION SEMANTIC RULES

E  E1 or E2 E1.true : = E.true;

 E1.false : = newlabel;

 E2.true : = E.true;

 E2.false : = E.false;

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

35

2020 – 2021 Jeppiaar Institute of Technology

 E.code : = E1.code || gen(E1.false ‘:’) || E2.code

E  E1 and E2 E1.true : = newlabel;

 E1.false : = E.false;

 E2.true : = E.true;

 E2.false : = E.false;

 E.code : = E1.code || gen(E1.true ‘:’) || E2.code

E  not E1 E1.true : = E.false;

 E1.false : = E.true;

 E.code : = E1.code

CS8602-Compiler Design Department of CSE

36

2020 – 2021 Jeppiaar Institute of Technology

E1.true : = E.true;

E1.false : = E.false;

 E  (E1)

 E.code : = E1.code

E  id1 relop id2 E.code : = gen(‘if’ id1.place relop.op id2.place

 ‘goto’ E.true) || gen(‘goto’ E.false)

E  true E.code : = gen(‘goto’ E.true)

E  false E.code : = gen(‘goto’ E.false)

Flow-of-Control Statements

We now consider the translation of boolean expressions into three-address code in the

context of if-then, if-then-else, and while-do statements such as those generated by the following

grammar:

S  if E then S1
| if E then S1 else S2

| while E do S1

In each of these productions, E is the Boolean expression to be translated. In the translation, we

assume that a three-address statement can be symbolically labeled, and that the function

newlabel returns a new symbolic label each time it is called.

 E.true is the label to which control flows if E is true, and E.false is the label to which

control flows if E is false. 


 The semantic rules for translating a flow-of-control statement S allow control to flow

from the translation S.code to the three-address instruction immediately following

S.code. 


 S.next is a label that is attached to the first three-address instruction to be executed after

the code for S. 

 Code for if-then , if-then-else, and while-do statements

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

37

2020 – 2021 Jeppiaar Institute of Technology

 E.code to E.true E.true:

E.true : E.false

 S1.code
 E.false:

E.false : . . .

S.next:

(a) if-then

(b) if-then

 -else

 to E.true

 E.code
 to E.false

 S1.code

 goto S.next

 S2.code

. .

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

38

2020 – 2021 Jeppiaar Institute of Technology

S.begin: E.code to E.true

 to E.false

E.true: S1.code

goto S.begin

E.false: . . .

(c) while-do

Syntax-directed definition for flow-of-control statements

PRODUCTION

SEMANTIC RULES

S  if E then S1 E.true : = newlabel;

 E.false : = S.next;

 S1.next : = S.next;

 S.code : = E.code || gen(E.true ‘:’) || S1.code

S  if E then S1 else S2 E.true : = newlabel;

 E.false : = newlabel;

 S1.next : = S.next;

 S2.next : = S.next;

 S.code : = E.code || gen(E.true ‘:’) || S1.code ||

 gen(‘goto’ S.next) ||

 gen(E.false ‘:’) || S2.code

S  while E do S1 S.begin : = newlabel;

 E.true : = newlabel;

 E.false : = S.next;

 S1.next : = S.begin;

 S.code : = gen(S.begin ‘:’)|| E.code ||

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

39

2020 – 2021 Jeppiaar Institute of Technology

 gen(E.true ‘:’) || S1.code ||

 gen(‘goto’ S.begin)

TYPE CHECKING

A compiler must check that the source program follows both syntactic and semantic

conventions of the source language.
This checking, called static checking, detects and reports programming errors.

Some examples of static checks:

1. Type checks – A compiler should report an error if an operator is applied to an

incompatible operand. Example: If an array variable and function variable are added

together.

2. Flow-of-control checks – Statements that cause flow of control to leave a construct must

have some place to which to transfer the flow of control. Example: An error occurs when an

enclosing statement, such as break, does not exist in switch statement.

 Position of type checker

token

syntax

syntax

intermediate

parser typechecker intermediate

stream code generator

 A type checker verifies that the type of a construct matches that expected by its context.

For example : arithmetic operator mod in Pascal requires integer operands, so a type

checker verifies that the operands of mod have type integer. 


http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

40

2020 – 2021 Jeppiaar Institute of Technology

 Type information gathered by a type checker may be needed when code is generated. 

TYPE SYSTEMS

The design of a type checker for a language is based on information about the syntactic

constructs in the language, the notion of types, and the rules for assigning types to

language constructs.

For example : “ if both operands of the arithmetic operators of +,- and * are of type integer,

then the result is of type integer ”

Type Expressions

 The type of a language construct will be denoted by a “type expression.” 


 A type expression is either a basic type or is formed by applying an operator called a

type constructor to other type expressions. 


 The sets of basic types and constructors depend on the language to be checked. 

The following are the definitions of type expressions:

1. Basic types such as boolean, char, integer, real are type expressions.

A special basic type, type_error , will signal an error during type checking; void denoting

“the absence of a value” allows statements to be checked.

2. Since type expressions may be named, a type name is a type expression.

3. A type constructor applied to type expressions is a type expression.

Constructors include:
Arrays : If T is a type expression then array (I,T) is a type expression denoting the type

of an array with elements of type T and index set I.

Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is a

type expression.

Records : The difference between a record and a product is that the fields of a record

have names. The record type constructor will be applied to a tuple formed from field

names and field types.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

41

2020 – 2021 Jeppiaar Institute of Technology

For example:
type row = record

address: integer;
lexeme: array[1..15] of char

end;
var table: array[1...101] of row;

declares the type name row representing the type expression record((address X integer) X

(lexeme X array(1..15,char))) and the variable table to be an array of records of this type.

Pointers : If T is a type expression, then pointer(T) is a type expression denoting the type

“pointer to an object of type T”.
For example, var p: ↑ row declares variable p to have type pointer(row).

Functions : A function in programming languages maps a domain type D to a range type

R. The type of such function is denoted by the type expression D → R

4. Type expressions may contain variables whose values are type expressions.

 Tree representation for char x char → pointer (integer)

 →

x pointer

char char integer

Type systems

 A type system is a collection of rules for assigning type expressions to the various parts of

a program. 


 A type checker implements a type system. It is specified in a syntax-directed manner. 


 Different type systems may be used by different compilers or processors of the same

language. 

Static and Dynamic Checking of Types

 Checkingdone by a compiler is said to be static, while checking done when the target

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

42

2020 – 2021 Jeppiaar Institute of Technology

program runs is termed dynamic. 


 Any check can be done dynamically, if the target code carries the type of an element

along with the value of that element. 

Sound type system
A sound type system eliminates the need for dynamic checking for type errors because it

allows us to determine statically that these errors cannot occur when the target program runs.

That is, if a sound type system assigns a type other than type_error to a program part, then type

errors cannot occur when the target code for the program part is run.

Strongly typed language

A language is strongly typed if its compiler can guarantee that the programs it accepts

will execute without type errors.

Error Recovery

 Since type checking has the potential for catching errors in program, it is desirable for

type checker to recover from errors, so it can check the rest of the input. 


 Error handling has to be designed into the type system right from the start; the type

checking rules must be prepared to cope with errors. 

SPECIFICATION OF A SIMPLE TYPE CHECKER

Here, we specify a type checker for a simple language in which the type of each

identifier must be declared before the identifier is used. The type checker is a translation scheme

that synthesizes the type of each expression from the types of its sub expressions. The type

checker can handle arrays, pointers, statements and functions.

A Simple Language

Consider the following grammar:

P → D ; E

D → D ; D | id : T

T → char | integer | array [num] of T | ↑ T

E → literal | num | id | E mod E | E [E] | E ↑

Translation scheme:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

43

2020 – 2021 Jeppiaar Institute of Technology

P → D ; E

D → D ; D

{ addtype (id.entry , T.type)}

D → id : T

T → char { T.type : = char }

T → integer { T.type : = integer }

T → ↑ T1 { T.type : = pointer(T1.type) }

T → array [num] of T1 { T.type : = array (1… num.val , T1.type) }

In the above language,
→ There are two basic types : char and integer ;
→ type_error is used to signal errors;
→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type expression

pointer (integer).

Type checking of expressions

In the following rules, the attribute type forE gives the type expression assigned to the

expression generated by E.

1. E → literal { E.type : = char }

E → num { E.type : = integer }

Here, constants represented by the tokens literal and num have type char and integer.

2. E → id { E.type : = lookup (id.entry) }

lookup (e) is used to fetch the type saved in the symbol table entry pointed to by e.

3. E → E1 mod E2 { E.type : = if E1. type = integer and

E2. type = integer then integer

else type_error }
The expression formed by applying the mod operator to two subexpressions of type integer has

type integer; otherwise, its type is type_error.

4. E → E1 [E2] { E.type : = if E2.type = integer and

 E1.type = array(s,t) then t
 else type_error }

In an array reference E1 [E2] , the index expression E 2 must have type integer. The result

is the element type t obtained from the type array(s,t) of E1.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

44

2020 – 2021 Jeppiaar Institute of Technology

5. E → E1 ↑ { E.type : = if E1.type = pointer (t) then t
 else type_error }

The postfix operator ↑ yields the object pointed to by its operand. The type of E ↑ is the type

t of the object pointed to by the pointer E.

Type checking of statements

Statements do not have values; hence the basic type void can be assigned to them. If an error

is detected within a statement, then type_error is assigned.

Translation scheme for checking the type of statements:

1. Assignment statement:

S → id : = E { S.type : = if id.type = E.type then void else

type_error }

2. Conditional statement:

S → if E then S1 { S.type : = if E.type = boolean then S1.type

else type_error }

3. While statement:

S → while E do S1 { S.type : = if E.type = boolean then S1.type

else type_error }

4. Sequence of statements:

S → S1 ; S2 { S.type : = if S1.type = void and S2.type = void

then void
else type_error }

Type checking of functions

The rule for checking the type of a function application is :

E → E1 (E2) { E.type : = if E2.type = s and
E1.type = s → t then t

else type_error }

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

45

2020 – 2021 Jeppiaar Institute of Technology

	TOP DOWN EVALUATION OF L-ATTRIBUTED DEFINITION

