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UNIT III INTERMEDIATE CODE GENERATION   8 

 

Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate 

Languages: Syntax Tree, Three Address Code, Types and Declarations, Translation of 

Expressions, Type Checking. 

 

 

SYNTAX – DIRECTED TRANSLATION 

  

Syntax-Directed Translations 

• Translation of languages guided by CFGs 

• Information associated with programming language constructs 

– Attributes attached to grammar symbols 

– Values of attributes computed by “semantic rules” associated with grammar 

productions 

• Two notations for associating semantic rules 

– Syntax-directed definitions 

– Translation schemes 

 

Semantic Rules 

• Semantic rules perform various activities: 

– Generation of code 

– Save information in a symbol table 

– Issue error messages 

– Other activities 

• Output of semantic rules is the translation of the token stream 

 

Conceptual View 

 
• Implementations do not need to follow outline literally 

• Many “special cases” can be implemented in a single pass 

 

SYNTAX DIRECTED DEFINITIONS 

 

   Syntax directed definition is a generalization of a context free grammar in which 

each grammar symbol has an associated set of attributes, partitioned into two subsets 

called synthesized attributes and inherited attributes. 
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Attributes 

 

• Each grammar symbol (node in parse tree) has attributes attached to it ex: a string, a 

number, a type, a memory location etc. 

• Values of a Synthesized attributes at a node is computed from the values of attributes at 

the children of that node in the parse tree. 

• Values of a Inherited attributes at a node is computed from the values of attributes at the 

siblings and parent of that node. 

   A dependency graph represents dependencies between attributes 

A parse tree showing the values of attributes at each node is an annotated parse tree 

• Each semantic rule for production A -> α has the form  

  b := f(c1, c2, …, ck)  

– f is a function 

– b may be a synthesized attribute of A or 

– b may be an inherited attribute of one of the grammar symbol on the right side of 

the production 

– c1, c2, …, ck are attributes belonging to grammar symbols of production 

• An attribute grammar is one in which the functions  in semantic rule cannot  have side 

effects 

NOTE: a semantic rule may have side effects ex: printing a value or updating a global 

variable. 

 

S-attributed Definitions 

 

• Synthesized attributes are used extensively in practice 

• S-attributed definition: A syntax-directed definition using only synthesized attributes 

• Parse tree can be annotated by evaluation nodes during a single bottom up pass 

S-attributed Definition Example 

Desk calculator 

Production Semantic Rules 

L  E n  print(E.val) 

E  E
1
 + T  E.val := E

1
.val + T.val 

E  T  E.val := T.val 

T  T
1
 * F  T.val := T

1
.val * F.val 

T  F  T.val := F.val 
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F  (E)  F.val := E.val 

F  digit  F.val := digit.lexval  

 

Annotated Parse Tree Example 

 
 

 

 

NOTE 

 

In a syntax directed definations, terminals are assumed to have  

   Synthesized attributes only,as the definations does not provide any semantic rules for 

terminals.values for attributes of terminals are usually supplied by the lexical 

analyser.Start symbol is assumed not to have any inherited attribute otherwise stated. 

 

Inherited Attributes 

 

• Inherited Attributes: 

– Value at a node in a parse tree depends 

    on attributes of parent and/or siblings 

– Convenient for expressing dependencies of programming language constructs on 

context 

• It is always possible to avoid inherited attributes, but they are often convenient 
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Inherited Attributes Example 

 

Production Semantic Rules 

D  T L  L.in := T.type  

T  int  T.type := integer 

T  real  T.type := real 

L  L
1
, id  

L
1
.in := L.in  

addtype(id.entry, L.in) 

L  id  addtype(id.entry, L.in) 

 

 

Annotated Inherited Attributes 

 
 

Dependency Graphs 

 

• Dependency graph: 

– Depicts interdependencies among synthesized and inherited attributes 

– Includes dummy nodes for procedure calls 

• Numbered with a topological sort 
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– If mi  mj is an edge from mi to mj, then mi appears before mj in the ordering  

– Gives valid order to evaluate semantic rules 

 

Creating a Dependency Graph 

 

for each node n in parse tree 

  for each attribute a of grammar symbol at n 

    construct a node in dependency graph for a 

for each node n in parse tree 

  for each semantic rule b := f(c1, c2, …, ck) 

           associated with production used at n 

    for i := 1 to k 

      construct edge from node for ci to node for b 

 

Example(inherited attribute) 

 
 

Two sub-classes of the syntax-directed definitions: 

 

– S-Attributed Definitions: only synthesized attributes used in the syntax-directed 

definitions. 

– L-Attributed Definitions: in addition to synthesized attributes, we may also use 

inherited attributes in a restricted fashion. 

      To implement S-Attributed Definitions and L-Attributed Definitions we can evaluate 

semantic rules in a single pass during the parsing. 

      Implementations of S-attributed Definitions are a little bit easier than 

implementations of L-Attributed Definitions 

 

BOTTOM-UP EVALUATION OF S-ATTRIBUTED DEFINITIONS 

 

• We put the values of the synthesized attributes of the grammar symbols into a parallel 

stack. 
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– When an entry of the parser stack holds a grammar symbol  X (terminal or non-

terminal), the corresponding entry in the parallel stack will hold the synthesized 

attribute(s) of the symbol X. 

• We evaluate the values of the attributes during reductions. 

 

 

Bottom-Up Evaluation Example 

 

Production Code Fragment 

(1) L  E \n  Print(val[top]) 

(2) E  E
1
 + t  val[ntop] := val[top-2] + val[top] 

(3) E  T  
 

(4) T  `T
1
 * F  val[ntop] := val[top-2] * val[top] 

(5) T  F  
 

(6) F  (E)  val[ntop] := val[top-1] 

(7) F  digit  
 

 

Bottom-Up Evaluation Example 

 

Input State Val Rule 

3*5+4\n --- --- 
 

*5+4\n 3 3 
 

*5+4\n F 3 (7) 

*5+4\n T 3 (5) 

5+4\n T* 3_ 
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+4\n T*5 3_5 
 

+4\n T*F 3_5 (7) 

+4\n T 3_5 (4) 

+4\n E 15 (3) 

4\n E+ 15_ 
 

\n E+4 15_4 
 

\n E+F 15_4 (7) 

\n E+T 15_4 (5) 

\n E 19 (2) 

 
E\n 19_ 

 

 
L 19 (1) 

 

 

TOP DOWN EVALUATION OF L-ATTRIBUTED DEFINITION 

A top-down parser can evaluate attributes as it parses if the attribute values can be computed in a 

top-down fashion. Such attribute grammars are termed L-Attributed.       First, we introduce a 

new type of symbol called an action symbol. Action symbols appear in the grammar in any place 

a terminal or nonterminal may appear. They may also have their own attributes. They may, 

however, be pushed onto their own stack, called a semantic stack or attribute stack. 

      We illustrate action symbols using the notation "<>" which indicates that the symbol within 

the brackets is to be pushed onto the semantic stack when it appears at the top of the parse stack. 

By inserting this action in appropriate places, we will create a translator which converts from 

infix expressions to postfix expressions. 
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We parse and translate a + b * c. The top is on the left for both stacks. 

 

When the semantic stack is popped, the translated string is: 

           a b c * + 

the input string translated to postfix. In Example 6, the action symbol did not have any attached 

attributes. 

     The BNF in Example 6 is in LL(1) form. This is necessary for the top-down parse. 
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      The formal definition of an L-attributed grammars is as follows. An attribute grammar is L-

attributed if and only if for each production X0 -> X1 X2. . . Xi. . . Xn, 

 (1) {Xi.inh} = f ({Xj.inh} , {Xk.att})            i, j >= 1, 0<=k<i 

 (2) {X0.syn} = f ({X0.inh} , {Xj.att})            1<=j<=n 

 (3) {ActionSymbol.Syn} = f ({ActionSymbol.Inh}) 

     (1) says that each inherited attribute of a symbol on the right-hand side depends only on 

inherited attributes of the right-hand side and arbitrary attributes of the symbols to the left of the 

given right-hand side symbol. 

     (2) says that each synthesized attributes of the left-hand-side symbol depends only on 

inherited attributes of that symbol and arbitrary attributes of right-hand-side symbols. 

     (2) says that the synthesized attributes of any action symbol depend only on the inherited 

attributes of the action symbol. 

 

 

INTRODUCTION – Intermediate Code generator 
 

The front end translates a source program into an intermediate representation from 

which the back end generates target code. 
 
Benefits of using a machine-independent intermediate form are: 
 
1. Retargeting is facilitated. That is, a compiler for a different machine can be created 

by attaching a back end for the new machine to an existing front end.  
 
2. A machine-independent code optimizer can be applied to the intermediate representation.  
 

Position of intermediate code generator 
 

     

 intermediate 

  

parser   static   intermediate code 
 

   checker   code generator  code generator 
 

       

 
 
INTERMEDIATE  LANGUAGES 
 
Three ways of  intermediate representation: 

 
 Syntax  tree 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
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
 Postfix  notation 


 Three  address code 

 
The semantic  rules for generating three-address code from common programming language 

constructs are  similar to those for constructing syntax trees or for generating postfix notation. 
 
Graphical Representations: 
 
SYNTAX TREE: 
 

A syntax tree depicts the natural hierarchical structure of a source program. A dag 

(Directed Acyclic Graph) gives the same information but in a more compact way because 

common subexpressions are identified. A syntax tree and dag for the assignment statement a : = 

b * - c + b * - c are as follows: 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
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 assign    assign   

 a +   a +  

 *  *    *  

b uminus b uminus b uminus 
        

         

 c  c  c 

 (a) Syntax tree   (b) Dag 

 

Postfix notation: 
 

Postfix  notation is a linearized representation of a syntax tree; it is a list of the nodes of 

the tree in  which a node appears immediately after its children. The postfix notation for the 

syntax tree given  above is 
 

a b c  uminus * b c uminus * + assign 
 
Syntax-directed  definition for construction of Syntax Tree: 

 
Syntax  trees for assignment statements are produced by the syntax-directed definition. 

Non-terminal  S generates an assignment statement. The two binary operators + and * are 

examples of the  full operator set in a typical language. Operator associativities and precedences 

are the usual  ones, even though they have not been put into the grammar. This definition 

constructs the  tree from the input a : = b * - c + b* - c. 

 

 

PRODUCTION  SEMANTIC RULE 
  

S  id : = E S.nptr : = mknode(‘assign’,mkleaf(id, id.place), E.nptr) 

E  E1 +E2 E.nptr : = mknode(‘+’, E1.nptr, E2.nptr ) 

E  E1 * E2 E.nptr : = mknode(‘*’, E1.nptr, E2.nptr ) 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
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E  - E1 E.nptr : = mknode(‘uminus’, E1.nptr) 

E  (E1 ) E.nptr : = E1.nptr 

E  id E.nptr : = mkleaf( id, id.place ) 

  

 

Syntax-directed definition to produce syntax trees for assignment statements 
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The token id has an attribute place that points to the symbol-table  entry for the identifier. 

A symbol-table entry can be found from an attribute id.name, representing  the lexeme 

associated with that occurrence of id. If the lexical analyzer holds all lexemes in a single array of 

characters, then attribute name might be the index of the first character of the lexeme. 
 

Two representations of the syntax tree are as follows. In (a) each node is represented as a 

record with a field for its operator and additional fields for pointers to its children. In (b), nodes 

are allocated from an array of records and the index or position of the node serves as the pointer 

to the node. All the nodes in the syntax tree can be visited by following pointers, starting from 

the root at position 10. 
 

Two representations of the syntax tree 
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     (a)         (b)       
 

 
THREE-ADDRESS CODE: 
 
Three-address code is a sequence of statements of the general form 
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x : = y op z 
 
where x, y and z are names, constants, or compiler-generated temporaries; op stands for any 

operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-

valued data. Thus a source language expression like x+ y*z might be translated into asequence 
 

t1 : = y * z 

 t2 : = x + t1 
 
where t1 and t2 are compiler-generated temporary names. 
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Advantages of three-address code: 
 
 The unraveling of complicated arithmetic expressions and of nested flow-of-control 

statements makes three-address code desirable for target code generation and 

optimization. 


 The use of names for the intermediate values computed by a program allows three-

address code to be easily rearranged – unlike postfix notation. 
 

Three-address code is a linearized representation of a syntax tree or a dag in which 

explicit names correspond to the interior nodes of the graph. The syntax tree and dag are 

represented by the three-address code sequences. Variable names can appear directly in three-

address statements. 
 

Three-address code corresponding to the syntax tree and dag given above 
 

t1 : = - c t1 : = -c 

t2 :  = b * t1  t2 : = b * t1 

t3 :  = - c  t5 : = t2 + t2 

t4  : = b * t3  a : = t5 

t5 :  = t2 + t4  

a :  = t5  

(a) Code  for the syntax tree  (b) Code for the dag 
 
 
 
The reason for  the term “three-address code” is that each statement usually contains three 

addresses, two  for the operands and one for the result. 
 
Types of Three -Address Statements: 
 
The common three-address statements are: 
 
1. Assignment statements of the form x : = y op z, where op is a binary arithmetic or logical 

operation.  
 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
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2. Assignment instructions of the form x : = op y, where op is a unary operation. Essential 

unary operations include unary minus, logical negation, shift operators, and conversion 

operators that, for example, convert a fixed-point number to a floating-point number.  

 

3.Copy Statements of the form x : = y where the value of y is assigned to x.  

 

3. The unconditional jump goto L. The three-address statement with label L is the next to be 

executed.  

 
4. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (   

<, =, >=, etc. ) to x and y, and executes the statement with label L next if x stands in relation 
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relop to y. If not, the three-address statement following if x relop y  goto L is executed next, 

as in the usual sequence. 

 
6. param x and call p, n for procedure calls and return y, where y representing a returned value 

is optional. For example,  

param x1 

param x2  
 

. . .   
param xn 

call p,n  
 

generated as part of a call of the procedure p(x1, x2, …. ,xn ).  

 

7. Indexed assignments of the form x : = y[i] and x[i] : = y.  

 

8. Address and pointer assignments of the form x : = &y , x : = *y, and *x : = y.  
 

Syntax-Directed  Translation into Three-Address Code: 
 

When  three-address code is generated, temporary names are made up for the interior 

nodes of a syntax  tree. For example, id : = E consists of code to evaluate E into some temporary 

t, followed by  the assignment id.place : = t. 
 

Given  input a : = b * - c + b * - c, the three-address code is as shown above. 

The synthesized  attribute S.code represents the three-address code for the assignment S. 

The nonterminal  E has two attributes : 

1. E.place, the  name that will hold the value of E , and   
2. E.code, the  sequence of three-address statements evaluating E.  

 
Syntax -directed definition to produce three-address code for assignments 

 

PRODUCTION  SEMANTIC RULES 
  

S  id : = E  S.code : = E.code || gen(id.place ‘:=’ E.place) 

E  E1 + E2 E.place := newtemp; 

 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place) 

E  E1 * E2 E.place := newtemp; 
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 E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place) 

E  - E1 E.place := newtemp; 

 E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place) 

E  (E1 ) E.place : = E1.place; 

 E.code : = E1.code 

E  id E.place : = id.place; 

 E.code : = ‘ ‘ 
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 The  function newtemp returns a sequence of distinct names t1,t2,….. in response to 

successive  calls. 


 Notation  gen(x ‘:=’ y ‘+’ z) is used to represent three-address statement x := y + z. 

Expressions  appearing instead of variables like x, y and z are evaluated when passed to 

gen, and quoted operators or operand, like ‘+’ are taken literally. 


 Flow-of–control statements can be added to the language of assignments. The code for S 

whileEdoS1is generated using new attributesS.beginandS.afterto mark 

the firststatement in the code for E and the statement following the code for S, respectively. 

 The function newlabel returns a new label every time it is called. 


 We assume that a non-zero expression represents true; that is when the value of E 

becomes zero, control leaves the while statement. 

 
 
 

Write three address code for the below expression. 

                     a=b+c*d-e/f 

 

             t1=c*d 

             t2=e/f 

            t3=b+t1 

            t4=t3-t2 

             a=t4 

 

 

Implementation of Three-Address Statements: 
 

A three-address statement is an abstract form of intermediate code. In a compiler, 

these statements can be implemented as records with fields for the operator and the operands. 

Three such representations are: 

 

 

http://notes.pmr-insignia.org/
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 Quadruples 


 Triples 


 Indirect triples 
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Quadruples: 
 
 A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result. 



 The op field contains an internal code for the operator. The three-address statement x : = 

y op z is represented by placing y in arg1, z in arg2 and x in result. 


 The contents of fields arg1, arg2 and result are normally pointers to the symbol-table 

entries for the names represented by these fields. If so, temporary names must be entered 

into the symbol table as they are created. 
 
Triples: 
 
 To avoid  entering temporary names into the symbol table, we might refer to a temporary 

value  by the position of the statement that computes it. 


 If we  do so, three-address statements can be represented by records with only three 

fields: op, arg1  and arg2. 


 The  fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table 

or pointers  into the triple structure ( for temporary values ). 


 Since  three fields are used, this intermediate code format is known as triples. 
 

 

 op  arg1  arg2  result 
     

(0) uminus  C   t1 

(1) * B t1 t2 

(2) uminus C  t3 

(3) * B t3 t4 

(4) + t2 t4 t5 

(5) : = t3  a 

     

 

(a) Quadruples 
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  op  arg1 arg2 
     

 (0)  uminus  c   

(1) * b (0)  

(2) uminus c   

(3) * b (2)  

(4) + (1) (3)  

(5) assign a (4)  

     

 

(b) Triples 

 

Quadruple and triple representation of three-address statements given above 
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A ternary operation like x[i] : = y requires two entries in the triple structure as shown as below 

while x : = y[i] is naturally represented as two operations. 

 

 

  op arg1 arg2   
       

(0) [ ] = X i   

(1) assign (0) y   
       

 
 

(a) x[i] : = y 

 

 
 

 op arg1 arg2  
     

(0) = [ ] y i 

(1) assign x (0)  
     

 
 

(b) x : = y[i] 
 

 

Indirect Triples: 
 
 Another  implementation of three-address code is that of listing pointers to triples, 

rather than  listing the triples themselves. This implementation is called indirect triples. 


 For  example, let us use an array statement to list pointers to triples in the desired 

order. Then  the triples shown above might be represented as follows: 

 

 

   statement     op  arg1  arg2  
           

           

(0)  (14)     (14)  uminus  c   

(1)  (15)     (15)  *  b  (14)  

(2)  (16)     (16)  uminus  c   

(3)  (17)     (17)  *  b  (16)  

(4)  (18)     (18)  +  (15)  (17)  

(5)  (19)     (19)  assign  a  (18)  
           

 

  

Indirect triples representation of three-address statements 
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DECLARATIONS 
 

As the sequence of declarations in a procedure or block is examined, we can lay out 

storage for names local to the procedure. For each local name, we create a symbol-table entry 

with information like the type and the relative address of the storage for the name. The relative 

address consists of an offset from the base of the static data area or the field for local data in an 

activation record. 
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Declarations in a Procedure:  
The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a 

single procedure to be processed as a group. In this case, a global variable, say offset, can 

keep track of the next available relative address. 
 
In the translation scheme shown below: 
 
 Nonterminal P generates a sequence of declarations of the form id : T. 



 Before the first declaration is considered, offset is set to 0. As each new name is seen , 

that name is entered in the symbol table with offset equal to the current value of offset, 

and offset is incremented by the width of the data object denoted by that name. 


 The procedure enter( name, type, offset ) creates a symbol-table entry for name, gives its 

type type and relative address offset in its data area. 


 Attribute  type represents a type expression constructed from the basic types integer and 

real by  applying the type constructors pointer and array. If type expressions are 

represented  by graphs, then attribute type might be a pointer to the node representing a 

type  expression. 


 The  width of an array is obtained by multiplying the width of each element by the 

number  of elements in the array. The width of each pointer is assumed to be 4. 

 
 
 

 Computing the types and relative addresses of declared names 
 

P  D  { offset : = 0 } 
 

D  D ;  D 
 

D  id :  T  { enter(id.name, T.type, offset);  
offset : = offset + T.width } 

 

T  integer { T.type : = integer;  
T.width : = 4 } 

 

T  real { T.type : = real;  
T.width : = 8 } 
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T  array [ num ] of T1 { T.type : = array(num.val, T1.type);  

T.width : = num.val X T1.width } 
 

T  ↑ T1 { T.type : = pointer ( T1.type);  
T.width : = 4 } 
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Keeping Track of Scope Information: 
 

When a nested procedure is seen, processing of declarations in the enclosing procedure is 

temporarily suspended. This approach will be illustrated by adding semantic rules to the 

following language: 
 

P  D 
 

D  D ; D | id : T | proc id ; D ; S 
 
One possible implementation of a symbol table is a linked list of entries for names. 
 

A new symbol table is created when a procedure declaration D  proc id D1;S is seen, 

and entries for the declarations in D1 are created in the new table. The new table points back to 

the symbol table of the enclosing procedure; the name represented by id itself is local to the 

enclosing procedure. The only change from the treatment of variable declarations is that the 

procedure enter is told which symbol table to make an entry in. 
 

For  example, consider the symbol tables for procedures readarray, exchange, and 

quicksort pointing  back to that for the containing procedure sort, consisting of the entire 

program. Since  partition is declared within quicksort, its table points to that of quicksort. 
 

 Symbol tables for nested procedures 
 

         sort       
 

                 

      nil  header        
 

        a         
 

        x         
 

      readarray    to readarray  
 

      exchange    to exchange  
 

      quicksort         
 

  readarray  exchange     quicksort  
 

 
 header 

   
header 

   
header 

 
 

        
 

  i           k   
 

             v   
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            partition   
 

                
 

             partition  
 

             header  
 

             i   
 

             j   
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The semantic rules are defined in terms of the following operations: 
 
1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The 

argument previous points to a previously created symbol table, presumably that for the 

enclosing procedure.  

 
2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed 

to by table. Again, enter places type type and relative address offset in fields within the entry.  

 
3. addwidth(table, width) records the cumulative width of all the entries in table in the header 

associated with this symbol table.  

 
4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table 

pointed to by table. The argument newtable points to the symbol table for this procedure 

name.  
 

Syntax  directed translation scheme for nested procedures 
 
P  M D  { addwidth ( top( tblptr) , top (offset));  

 pop (tblptr); pop (offset) } 
 
M  ɛ  { t : = mktable (nil);  

 push (t,tblptr); push (0,offset) } 
 
D  D1 ; D2 
 
D  proc id ;  N D1 ; S     { t : = top (tblptr);  

 addwidth ( t, top (offset));  
 pop (tblptr); pop (offset);  
 enterproc (top (tblptr), id.name, t) } 

 
D  id : T  { enter (top (tblptr), id.name, T.type, top (offset));  

top (offset) := top (offset) + T.width } 
 
N  ɛ { t := mktable (top (tblptr));  

push (t, tblptr); push (0,offset) } 
 
 The stack tblptr is used to contain pointers to the tables for sort, quicksort, and 

partition when the declarations in partition are considered. 
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

 The top element of stack offset is the next available relative address for a local of 

the current procedure. 


 All semantic actions in the subtrees for B and C in 
 

A  BC {actionA} 
 

are done before actionA at the end of the production occurs. Hence, the action associated 

with the marker M is the first to be done. 
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 The action for nonterminal M initializes stack tblptr with a  symbol table for the 

outermost scope, created by operation mktable(nil). The action  also pushes relative 

address 0 onto stack offset. 


 Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new 

symbol table. The argument top(tblptr) gives the enclosing scope for the new table. 


 For each variable declaration id: T, an entry is created for id in the current symbol table. 

The top of stack offset is incremented by T.width. 


 When the action on the right side of D  proc id; ND1; S occurs, the width of all 

declarations generated by D1 is on the top of stack offset; it is recorded using addwidth. 

Stacks tblptr and offset are then popped. 


At this point, the name of the enclosed procedure is entered into the symbol table of 

its enclosing procedure. 

 

BOOLEAN EXPRESSIONS 
 

Boolean expressions have two primary purposes. They are used to compute logical 

values, but more often they are used as conditional expressions in statements that alter the flow 

of control, such as if-then-else, or while-do statements. 
 

Boolean expressions are composed of the boolean operators ( and, or, and not ) applied 

to elements that  are boolean variables or relational expressions. Relational expressions are of the 

form E1 relop  E2, where E1 and E2 are arithmetic expressions. 
 
Here we consider  boolean expressions generated by the following grammar : 
 

E  E  or E | E and E | not E | ( E ) | id relop id | true | false 
 

Methods of  Translating Boolean Expressions: 
 
There are two  principal methods of representing the value of a boolean expression. They are : 
 
 To encode  true and false numerically and to evaluate a boolean expression analogously 

to an  arithmetic expression. Often, 1 is used to denote true and 0 to denote false. 


 To  implement boolean expressions by flow of control, that is, representing the value of a 

boolean  expression by a position reached in a program. This method is particularly 
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convenient  in implementing the boolean expressions in flow-of-control statements, such 

as the  if-then and while-do statements. 
 
Numerical Representation 
 

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from 

left to right, in a manner similar to arithmetic expressions. 
 
For example : 
 
The translation for  

a or b and not c is  the three-address sequence  
t1 : = not c t2 

: = b and t1 t3 

: = a or t2 
 
A relational expression such as a < b is equivalent to the conditional statement

if a < b then 1 else 0  

 

 

which can be translated into the three-address code sequence (again,  we arbitrarily 

start statement numbers at 100) : 
 

100 :  if a < b goto 103  
101 :  t : = 0  
102 :  goto 104  
103 :  t : = 1  
104 :  

  Translation scheme using a numerical representation for booleans 
 

E  E1 or E2 { E.place : = newtemp; 
 

E  E1 and E2 

emit( E.place ‘: =’ E1.place ‘or’E2.place )} 
 

{ E.place : = newtemp; 
 

E  not E1 

emit( E.place ‘: =’ E1.place ‘and’E2.place )} 
 

{ E.place : = newtemp; 
 

 emit( E.place ‘: =’ ‘not’ E 1.place )} 
 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/


CS8602-Compiler Design                                                                             Department of CSE 

 

33 

2020 – 2021                                                                                  Jeppiaar Institute of Technology 

 

 

E  ( E1 )  { E.place : = E1.place } 
 

E  id1 relop  id2  { E.place : = newtemp; 
 

  emit( ‘if’ id1.place relop.op id2.place ‘goto’ nextstat + 3); 
 

  emit( E.place ‘: =’ ‘0’ ); 
 

  emit(‘goto’ nextstat +2); 
 

  emit( E.place ‘: =’ ‘1’) } 
 

E  true  { E.place : = newtemp; 
 

E false 

 emit( E.place ‘: =’ ‘1’) } 
 

 { E.place : = newtemp; 
 

  emit( E.place ‘: =’ ‘0’) } 
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Short-Circuit  Code:  
 

 
We can  also translate a boolean expression into three-address code without generating code 

for any of  the boolean operators and without having the code necessarily evaluate the entire 

expression. This  style of evaluation is sometimes called “short-circuit” or “jumping” code. It is 

possible to evaluate boolean expressions without generating code for the boolean operators and, or, 

and not if we represent the value of an expression by a position in the code sequence. 
 

Translation of a < b or c < d and e < f 
 

100 : if a < b goto 103 107 : t2 : = 1 

101 : t1 : = 0  108 : if e < f goto 111 

102 : goto 104  109 : t3 : = 0 

103 : t1 : = 1  110 : goto 112 

104 : if c < d goto 107 111 : t3 : = 1 

105 : t2 : = 0  112 : t4 : = t2 and t3 

106 : goto 108  113 : t5 : = t1 or t4  
 

 

Control-Flow  Translation of Boolean Expressions: 

 

 With the help of control flow mechanism, the Boolean operator and conditional statements in 

which Boolean expression are part of it are translated into three address code as follows. 
 

 Syntax-directed definition to produce three-address code for booleans 
 

 PRODUCTION  SEMANTIC RULES 
  

E  E1  or E2  E1.true : = E.true; 

 E1.false : = newlabel; 

 E2.true : = E.true; 

 E2.false : = E.false; 
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 E.code : = E1.code || gen(E1.false ‘:’) || E2.code 

E  E1 and E2 E1.true : = newlabel; 

 E1.false : = E.false; 

 E2.true : = E.true; 

 E2.false : = E.false; 

 E.code : = E1.code || gen(E1.true ‘:’) || E2.code 

E  not E1 E1.true : = E.false; 

 E1.false : = E.true; 

 E.code : = E1.code 
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E1.true : = E.true; 

E1.false : = E.false; 

 

        E  ( E1 ) 
 

 E.code : = E1.code 
 

E  id1 relop id2 E.code : = gen(‘if’ id1.place relop.op id2.place 
 

 ‘goto’ E.true) || gen(‘goto’ E.false) 
 

E  true E.code : = gen(‘goto’ E.true) 
 

E  false E.code : = gen(‘goto’ E.false) 
 

  
 

Flow-of-Control Statements 
 

We now consider the translation of boolean expressions into three-address code in the 

context of if-then, if-then-else, and while-do statements such as those generated by the following 

grammar: 
 

S  if E then S1  
| if E then S1 else S2 

| while E do S1 
 
In each of these productions, E is the Boolean expression to be translated. In the translation, we 

assume that a three-address statement can be symbolically labeled, and that the function 

newlabel returns a new symbolic label each time it is called. 
 
 E.true is the label to which control flows if E is true, and E.false is the label to which 

control flows if E is false. 


 The semantic  rules for translating a flow-of-control statement S allow control to flow 

from  the translation S.code to the three-address instruction immediately following 

S.code. 


 S.next  is a label that is attached to the first three-address instruction to be executed after 

the code  for S. 
 

 Code for if-then , if-then-else, and while-do statements 
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 E.code  to E.true  E.true: 
 
E.true :     E.false 

 S1.code  
 E.false: 

 
E.false :    . . . 
 

S.next: 

(a) if-then  

(b) if-then 

       -else 
 

 
 to E.true 

 E.code  
 to E.false 
 

 S1.code 
 
 
 goto S.next 
 

 S2.code 
 
 
 

. .
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S.begin: E.code to E.true 
 

  to E.false  

E.true: S1.code 
 

 
 

 

goto S.begin 
 

E.false: . . . 
 

(c) while-do 
 

 

 
 

Syntax-directed definition for flow-of-control statements  

PRODUCTION 

 

SEMANTIC RULES 

  

  
 

    
 

S  if E then S1  E.true : = newlabel;  
 

  E.false : = S.next;  
 

  S1.next : = S.next;  
 

  S.code : = E.code || gen(E.true ‘:’) || S1.code  
 

S  if E then S1 else S2  E.true : = newlabel;  
 

  E.false : = newlabel;  
 

  S1.next : = S.next;  
 

  S2.next : = S.next;  
 

  S.code : = E.code || gen(E.true ‘:’) || S1.code ||  
 

  gen(‘goto’ S.next) ||  
 

  gen( E.false ‘:’) || S2.code  
 

S  while  E do S1   S.begin : = newlabel;  
 

   E.true : = newlabel;  
 

   E.false : = S.next;  
 

   S1.next : = S.begin;  
 

   S.code : = gen(S.begin ‘:’)|| E.code ||  
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   gen(E.true ‘:’) || S1.code ||  
 

   gen(‘goto’ S.begin)  
 

    
 

 
 
 
 
 
 
 
 
 
 
 
 
 

TYPE CHECKING 
 

A compiler must check that the source program follows both syntactic and semantic 

conventions of the source language.  
This checking, called static checking, detects and reports programming errors. 

 
Some examples of static checks: 

 
1. Type checks – A compiler should report an error if an operator is applied to an 

incompatible operand. Example: If an array variable and function variable are added 

together.  

 

2. Flow-of-control checks – Statements that cause flow of control to leave  a construct must 

have some place to which to transfer the flow of control. Example: An error occurs when an 

enclosing statement, such as break, does not exist in switch statement.  
 

   Position of type checker   
 

token 

 

syntax 

  

syntax 

 

intermediate 
 

parser  typechecker intermediate 
 

stream      code generator  
 

        
 

 
 

 A type checker verifies that the type of a construct matches that expected by its context. 

For example : arithmetic operator mod in Pascal requires integer operands, so a type 

checker verifies that the operands of mod have type integer. 

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 Type information gathered by a type checker may be needed when code is generated. 
 
TYPE SYSTEMS 
 

The design of  a type checker for a language is based on information about the syntactic 

constructs in  the language, the notion of types, and the rules for assigning types to 

language constructs. 
 
For example :  “ if both operands of the arithmetic operators of +,- and * are of type integer, 

then the result is of  type integer ” 
 
Type Expressions 
 

 The type  of a language construct will be denoted by a “type expression.” 


 A type  expression is either a basic type or is formed by applying an operator called a 

type constructor  to other type expressions. 


 The sets  of basic types and constructors depend on the language to be checked. 
 
The following are the definitions of type expressions: 
 
1. Basic types such as boolean, char, integer, real are type expressions.  
 

A special basic type, type_error , will signal an error during type checking; void denoting 

“the absence of a value” allows statements to be checked.  
 
2. Since type expressions may be named, a type name is a type expression.  
 
3. A type constructor applied to type expressions is a type expression. 

Constructors include:   
Arrays : If T is a type expression then array (I,T) is a type expression denoting the type 

of an array with elements of type T and index set I.  

 
Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is a 

type expression. 

Records : The difference between a record and a product is that the fields of a record 

have names. The record type constructor will be applied to a tuple formed from field 

names and field types. 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/


CS8602-Compiler Design                                                                             Department of CSE 

 

41 

2020 – 2021                                                                                  Jeppiaar Institute of Technology 

 

 

For example:  
type row = record  

address: integer;  
lexeme: array[1..15] of char 

end;  
var table: array[1...101] of row;  

declares the type name row representing the type expression record((address X integer) X 

(lexeme X array(1..15,char))) and the variable table to be an array of records of this type. 

 
Pointers : If T is a type expression, then pointer(T) is a type expression denoting the type 

“pointer to an object of type T”.  
For example,  var p: ↑ row declares variable p to have type pointer(row). 

 

Functions  : A function in programming languages maps a domain type D to a range type 

R. The type  of such function is denoted by the type expression D → R 
 
4.  Type  expressions may contain variables whose values are type expressions. 
 

 Tree representation for char x char → pointer (integer) 

 

 → 

 

x  pointer 
 

char  char   integer 
 
Type systems 
 
 A type system is a collection of rules for assigning type expressions to the various parts of 

a program. 


 A type checker implements a type system. It is specified in a syntax-directed manner. 


 Different type systems may be used by different compilers or processors of the same 

language. 
 
Static and Dynamic Checking of Types 
 
 Checkingdone by a compiler is said to be static, while checking done when the target 

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/


CS8602-Compiler Design                                                                             Department of CSE 

 

42 

2020 – 2021                                                                                  Jeppiaar Institute of Technology 

 

 

program runs is termed dynamic. 


 Any check can be done dynamically, if the target code carries the type of an element 

along with the value of that element. 

Sound type system  
A sound type system eliminates the need for dynamic checking for type errors because it 

allows us to determine statically that these errors cannot occur when the target program runs. 

That is, if a sound type system assigns a type other than type_error to a program part, then type 

errors cannot occur when the target code for the program part is run. 
 
Strongly typed language  

A language is strongly typed if its compiler can guarantee that the programs it accepts 

will execute without type errors. 
 
Error Recovery 
 
 Since type checking has the potential for catching errors in program, it is desirable for 

type checker to recover from errors, so it can check the rest of the input. 


 Error handling has to be designed into the type system right from the start; the type 

checking  rules must be prepared to cope with errors. 
 
SPECIFICATION  OF A SIMPLE TYPE CHECKER 
 

Here,  we specify a type checker for a simple language in which the type of each 

identifier must be declared  before the identifier is used. The type checker is a translation scheme 

that synthesizes the  type of each expression from the types of its sub expressions. The type 

checker can handle arrays,  pointers, statements and functions. 
 
A Simple  Language 
 
Consider the  following grammar: 
 

P → D ; E  
 

D → D ; D | id  : T  
 

T → char |  integer | array [ num ] of T | ↑ T 
 

E → literal |  num | id | E mod E | E [ E ] | E ↑ 
 

Translation scheme:  
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P → D ; E  
 

D → D ; D 

{ addtype (id.entry , T.type)} 
 

D → id : T 
 

T → char { T.type : = char } 
 

T → integer { T.type : = integer } 
 

T → ↑ T1 { T.type : = pointer(T1.type) } 
 

T → array [ num ] of T1 { T.type : = array ( 1… num.val , T1.type) } 
 
In the above language,  
→ There are two basic types : char and integer ;   
→ type_error is used to signal errors;   
→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type expression 

pointer ( integer ).  

Type checking of expressions 
 
In the following rules, the attribute type forE gives the type expression assigned to the 

expression generated by E. 
 

1. E → literal { E.type : = char } 

E → num { E.type : = integer } 

Here, constants represented by the tokens literal and num have type char and integer. 
 
2. E → id      { E.type : = lookup ( id.entry ) }  

lookup ( e ) is used to fetch the type saved in the symbol table entry pointed to by e. 
 
3. E → E1 mod E2   { E.type : = if E1. type = integer and  

E2. type = integer then integer 

else type_error }  
The expression formed by applying the mod operator to two subexpressions of type integer has 

type integer;  otherwise, its type is type_error. 
 
4. E → E1 [ E2  ]   { E.type : = if E2.type = integer and  

 E1.type = array(s,t) then t  
 else type_error }  

In an array  reference E1 [ E2 ] , the index expression E 2 must have type integer. The result 

is the element  type t obtained from the type array(s,t) of E1. 
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5. E → E1 ↑     { E.type : = if E1.type = pointer (t) then t  
 else type_error } 

 
The postfix  operator ↑ yields the object pointed to by its operand. The type of E ↑ is the type 

t of the object  pointed to by the pointer E. 
 
Type checking  of statements 
 
Statements do  not have values; hence the basic type void can be assigned to them. If an error 

is detected within  a statement, then type_error is assigned. 
 
Translation scheme for checking the type of statements: 
 
1. Assignment statement:  

S → id : = E { S.type : = if id.type = E.type then void else 

type_error } 
 
2. Conditional statement:  

S → if E then S1 { S.type : = if E.type = boolean then S1.type 

else type_error } 
 
3. While statement:  

S → while E do S1 { S.type : = if E.type = boolean then S1.type 

else type_error } 

 
 
4. Sequence of statements:  

S → S1 ; S2 { S.type : = if S1.type = void and S2.type = void 

then void  
else type_error } 

 
Type checking of functions 
 
The rule for checking the type of a function application is :  

E → E1 ( E2)  { E.type : = if E2.type = s and  
E1.type = s → t then t 

else type_error } 
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