
CS8602-Compiler Design Department of CSE

1

2020 - 2021 Jeppiaar Institute of Technology

UNIT II SYNTAX ANALYSIS

Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar –

Top Down Parsing - General Strategies Recursive Descent Parser Predictive Parser-LL(1)

Parser-Shift Reduce Parser-LR Parser-LR (0)Item Construction of SLR Parsing Table -

Introduction to LALR Parser - Error Handling and Recovery in Syntax Analyzer-YACC.

SYNTAX ANALYSIS

Syntax analysis is the second phase of the compiler. It gets the input from the tokens and

generates a syntax tree or parse tree.

Advantages of grammar for syntactic specification:

1. A grammar gives a precise and easy-to-understand syntactic specification of a programming

language.
2. An efficient parser can be constructed automatically from a properly designed grammar.
3. A grammar imparts a structure to a source program that is useful for its translation into

object code and for the detection of errors.
4. New constructs can be added to a language more easily when there is a grammatical

description of the language.

THE ROLE OF PARSER

The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer and

verifies that the string can be generated by the grammar for the source language. It reports any

syntax errors in the program. It also recovers from commonly occurring errors so that it can

continue processing its input.

 Position of parser in compiler model

source lexical token parser parse rest of intermediate

program analyzer
 get next token

 tree front end representation

symbol

table

Functions of the parser :

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

2

2020 - 2021 Jeppiaar Institute of Technology

1. It verifies the structure generated by the tokens based on the grammar.
2. It constructs the parse tree.
3. It reports the errors.
4. It performs error recovery.

Issues :

Parser cannot detect errors such as:

1. Variable re-declaration
2. Variable initialization before use.
3. Data type mismatch for an operation.

The above issues are handled by Semantic Analysis phase.

Syntax error handling :

Programs can contain errors at many different levels. For example :
1. Lexical, such as misspelling a keyword.
2. Syntactic, such as an arithmetic expression with unbalanced parentheses.
3. Semantic, such as an operator applied to an incompatible operand.
4. Logical, such as an infinitely recursive call.

Functions of error handler :

1. It should report the presence of errors clearly and accurately.
2. It should recover from each error quickly enough to be able to detect subsequent errors.
3. It should not significantly slow down the processing of correct programs.

Error recovery strategies :

The different strategies that a parse uses to recover from a syntactic error are:

1. Panic mode
2. Phrase level
3. Error productions
4. Global correction

Panic mode recovery:

On discovering an error, the parser discards input symbols one at a time until a

synchronizing token is found. The synchronizing tokens are usually delimiters, such as semicolon

or end. It has the advantage of simplicity and does not go into an infinite loop. When multiple

errors in the same statement are rare, this method is quite useful.

Phrase level recovery:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

3

2020 - 2021 Jeppiaar Institute of Technology

On discovering an error, the parser performs local correction on the remaining input that allows

it to continue. Example: Insert a missing semicolon or delete an extraneous semicolon etc.

Error productions:

The parser is constructed using augmented grammar with error productions. If an error

production is used by the parser, appropriate error diagnostics can be generated to indicate the

erroneous constructs recognized by the input.

Global correction:

Given an incorrect input string x and grammar G, certain algorithms can be used to find a parse

tree for a string y, such that the number of insertions, deletions and changes of tokens is as small as

possible. However, these methods are in general too costly in terms of time and space.

CONTEXT-FREE GRAMMARS

A Context-Free Grammar is a quadruple that consists of terminals, non-terminals, start

symbol and productions.

Terminals : These are the basic symbols from which strings are formed.

Non-Terminals : These are the syntactic variables that denote a set of strings. These help to define

the language generated by the grammar.

Start Symbol : One non-terminal in the grammar is denoted as the “Start-symbol” and the set of

strings it denotes is the language defined by the grammar.

Productions : It specifies the manner in which terminals and non-terminals can be combined to

form strings. Each production consists of a non-terminal, followed by an arrow, followed by a

string of non-terminals and terminals.

Example of context-free grammar: The following grammar defines simple arithmetic

expressions:

expr → expr op expr

expr → (expr)
expr → - expr

expr → id

 op → +

 op → -

 op → *

 op → /

 op → ↑

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

4

2020 - 2021 Jeppiaar Institute of Technology

In this grammar,

 id + - * / ↑() are terminals.
 expr , op are non-terminals.
 expr is the start symbol.
 Each line is a production.

Derivations:

Two basic requirements for a grammar are :
1. To generate a valid string.
2. To recognize a valid string.

Derivation is a process that generates a valid string with the help of grammar by replacing the non-

terminals on the left with the string on the right side of the production.

Example : Consider the following grammar for arithmetic expressions :

E → E+E |E*E |(E) | - E | id

To generate a valid string - (id+id) from the grammar the steps are

1. E → - E
2. E → - (E)
3. E → - (E+E)
4. E → - (id+E)
5. E → - (id+id)

In the above derivation,
 E is the start symbol.

 - (id+id) is the required sentence (only terminals).

 Strings such as E, -E, -(E), . . . are called sentinel forms.

Types of derivations:

The two types of derivation are:

1. Left most derivation
2. Right most derivation.

 In leftmost derivations, the leftmost non-terminal in each sentinel is always chosen first for

replacement.

 In rightmost derivations, the rightmost non-terminal in each sentinel is always chosen first

for replacement.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

5

2020 - 2021 Jeppiaar Institute of Technology

Example:

Given grammar G : E → E+E |E*E |(E) | - E |id

Sentence to be derived : – (id+id)

LEFTMOST DERIVATION RIGHTMOST DERIVATION

E → - E E → - E

E → - (E) E → - (E)

E → - (E+E) E → - (E+E)

E → - (id+E) E → - (E+id)

E → - (id+id) E → - (id+id)

 String that appear in leftmost derivation are called left sentinel forms.

 String that appear in rightmost derivation are called right sentinel forms.

Sentinels:

Given a grammar G with start symbol S, if S → α , where α may contain non-terminals or

terminals, then α is called the sentinel form of G.

Yield or frontier of tree:

Each interior node of a parse tree is a non-terminal. The children of node can be a terminal

or non-terminal of the sentinel forms that are read from left to right. The sentinel form in the parse

tree is called yield or frontier of the tree.

Ambiguity:

A grammar that produces more than one parse for some sentence is said to be ambiguous

grammar.

Example : Given grammar G : E → E+E | E*E | (E) | - E | id

The sentence id+id*id has the following two distinct leftmost derivations:

E → E+ E E → E* E

E → id + E E → E + E * E

E → id + E * E E → id + E * E

E → id + id * E E → id + id * E

E → id + id * id E → id + id * id

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

6

2020 - 2021 Jeppiaar Institute of Technology

 E

 E

E + E E * E

id E * E E + E id

 id id

 id id

WRITING A GRAMMAR

There are four categories in writing a grammar:

1. Regular Expression Vs Context Free Grammar
2. Eliminating ambiguous grammar.
3. Eliminating left-recursion
4. Left-factoring.

Each parsing method can handle grammars only of a certain form hence, the initial grammar may

have to be rewritten to make it parsable.

Regular Expressions vs. Context-Free Grammars:

REGULAR EXPRESSION CONTEXT-FREE GRAMMAR

It is used to describe the tokens of programming

languages.

It is used to check whether the given input is

valid or not using transition diagram.

It consists of a quadruple where S → start

symbol, P → production, T → terminal, V →

variable or non- terminal.
It is used to check whether the given input is

valid or not using derivation.

The transition diagram has set of states and

edges.

It has no start symbol.

The context-free grammar has set of

productions.

It has start symbol.

It is useful for describing the structure of lexical

constructs such as identifiers, constants,

keywords, and so forth.

 It is useful in describing nested structures

such as balanced parentheses, matching

begin-end’s and so on.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

7

2020 - 2021 Jeppiaar Institute of Technology

 The lexical rules of a language are simple and RE is used to describe them.

 Regular expressions provide a more concise and easier to understand notation for tokens

than grammars.

 Efficient lexical analyzers can be constructed automatically from RE than from

grammars.

 Separating the syntactic structure of a language into lexical and nonlexical parts provides

a convenient way of modularizing the front end into two manageable-sized components.

Eliminating ambiguity:

Ambiguity of the grammar that produces more than one parse tree for leftmost or rightmost

derivation can be eliminated by re-writing the grammar.

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following

two parse trees for leftmost derivation:

 stmt

if expr then

stmt

 E1

 if expr then stmt else

2.

 stmt

E

2

 S1

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

8

2020 - 2021

Jeppiaar Institute of Technology

if expr then stmt else stmt

 E

1

 S

2

 if expr then stmt

E2 S1

To eliminate ambiguity, the following

grammar may be used:

stmt → matched_stmt |

unmatched_stmt

matched_stmt → if expr then

matched_stmt else matched_stmt |

other

unmatched_stmt → if expr then stmt | if

expr then matched_stmt else

unmatched_stmt

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of

CSE

9

2020 - 2021 Jeppiaar Institute of

Technology

If there is a production A → Aα |β it can be replaced with a sequence of two productions

A → βA’

A’→ αA’ | ε without

changing the set of strings derivable from A.

Example : Consider the following grammar for arithmetic expressions:

E → E+T |T

T → T*F |F

F→ (E) |id

First eliminate the left recursion for E

as E → TE’

E’ → +TE’ |ε

Then eliminate for T

as T → FT’

T’→ *FT’ | ε

Thus the obtained grammar after eliminating left recursion

is E → TE’

E’ → +TE’ | ε

T → FT’

T’ → *FT’ | ε

F → (E) |id

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order A1, A2 . . . An.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of

CSE

10

2020 - 2021 Jeppiaar Institute of

Technology

2. for i := 1 to n do begin
for j := 1 to i-1 do begin

replace each production of the form Ai → A j γ by

the productions Ai → δ1 γ | δ2γ | . . . | δk γ

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions;
end
eliminate the immediate left recursion among the Ai-productions

end

CS8602-Compiler Design Department of CSE

11

2020 - 2021 Jeppiaar Institute of Technology

Left factoring:

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing. When it is not clear which of two alternative productions to use to

expand a non-terminal A, we can rewrite the A-productions to defer the decision until we have

seen enough of the input to make the right choice.

If there is any production A → αβ1 | αβ2 , it can be rewritten as

A → αA’

A’→ β1 | β2

Consider the grammar , G : S → iEtS | iEtSeS | a

E → b

Left factored, this grammar becomes

S → iEtSS’ | a
S’→ eS |ε
E → b

PARSING

It is the process of analyzing a continuous stream of input in order to determine its

grammatical structure with respect to a given formal grammar.

Parse tree:

Graphical representation of a derivation or deduction is called a parse tree. Each interior

node of the parse tree is a non-terminal; the children of the node can be terminals or non-

terminals.

Types of parsing:

1. Top down parsing
2. Bottom up parsing

 Top–down parsing : A parser can start with the start symbol and try to transform it to the

input string.

Example : LL Parsers.

 Bottom–up parsing : A parser can start with input and attempt to rewrite it into the start

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

12

2020 - 2021 Jeppiaar Institute of Technology

symbol.

Example : LR Parsers.

TOP-DOWN PARSING

It can be viewed as an attempt to find a left-most derivation for an input string or an

attempt to construct a parse tree for the input starting from the root to the leaves.

CS8602-Compiler Design Department of CSE

13

2020 - 2021 Jeppiaar Institute of Technology

Types of top-down parsing :

1. Recursive descent parsing
2. Predictive parsing

1. RECURSIVE DESCENT PARSING

 Recursive descent parsing is one of the top-down parsing techniques that uses a set of

recursive procedures to scan its input.

 This parsing method may involve backtracking, that is, making repeated scans of the

input.

Example for backtracking :

Consider the grammar G : S → cAd

A → ab |a
and the input string w=cad.

The parse tree can be constructed using the followingtop-down approach :

Step1:

Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first symbol

of w. Expand the tree with the production of S.

 S

c A d

Step2:

The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second

symbol of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative.

S

c A d

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

14

2020 - 2021 Jeppiaar Institute of Technology

a b

Step3:

The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer

to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the input

symbol d.

CS8602-Compiler Design Department of CSE

15

2020 - 2021 Jeppiaar Institute of Technology

Hence discard the chosen production and reset the pointer to second position. This is called

backtracking.

Step4:

Now try the second alternative for A.

S

c A d

a

Now we can halt and announce the successful completion of parsing.

PREDICTIVE PARSER:

It is implemented by using non backtracking concept. It is categorized into two types,

1. recursive Predictive parser

2. non recursive Predictive parser

RECURSIVE PREDICTIVE PARSER

It is implemented by using recursion mechanism. A left-recursive grammar can cause a

recursive Predictive parser to go into an infinite loop. Hence, elimination of left-recursion

must be done before parsing.

Consider the grammar for arithmetic expressions

E → E+T |T

T → T*F |F

F→ (E) |id

After eliminating the left-recursion the grammar

becomes, E → TE’

E’ → +TE’ | ε

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

16

2020 - 2021 Jeppiaar Institute of Technology

T → FT’

T’ → *FT’ | ε

F → (E) |id

Now we can draw transition diagram for each of the non terminal,

From the above diagram we can reduce the number of states in E’ diagram and substitute it in

Nonterminal E diagram as follows,

CS8602-Compiler Design Department of CSE

17

2020 - 2021 Jeppiaar Institute of Technology

Similarly reducing T’ Diagram, the resultant transition diagram are,

CS8602-Compiler Design Department of CSE

18

2020 - 2021 Jeppiaar Institute of Technology

write the procedure based on above grammar as follows:

Recursive procedure:

Procedure E()

begin
T();

EPRIME();

end

Procedure EPRIME()

begin
If input_symbol=’+’ then ADVANCE();
T(); EPRIME();

End

Procedure T()

 begin
F(); TPRIME();

end

CS8602-Compiler Design Department of CSE

19

2020 - 2021 Jeppiaar Institute of Technology

Procedure TPRIME()

begin
If input _symbol=’*’ then ADVANCE(

);
F(); TPRIME();

end

Procedure F()

 begin
If input -symbol=’id’ then ADVANCE(

);
else if input-symbol=’(‘ then ADVANCE(

);
E();
else if input-symbol=’)’ then ADVANCE(

);
end

else ERROR();

2. PREDICTIVE PARSING (Non Recursive Predictive Parser)

 Predictive parsing is a special case of recursive descent parsing where no backtracking is

required.

 The key problem of predictive parsing is to determine the production to be applied for a

non- terminal in case of alternatives.

Non-recursive predictive parser

 INPUT a + b $

STACK

X

Predictive parsing program

OUTPUT

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of

CSE

20

2020 - 2021 Jeppiaar Institute of Technology

 Y

Z

$

Parsing Table M

CS8602-Compiler Design Department of CSE

21

2020 - 2021 Jeppiaar Institute of Technology

The table-driven predictive parser has an input buffer, stack, a parsing table and an output

stream.

Input buffer:

It consists of strings to be parsed, followed by $ to indicate the end of the input string.

Stack:

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack.

Initially, the stack contains the start symbol on top of $.

Parsing table:

It is a two-dimensional array M[A, a], where ‘A’ is anon-terminal and ‘a’ is aterminal.

Predictive parsing program:

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the

current input symbol. These two symbols determine the parser action. There are three

possibilities:

1. If X = a = $, the parser halts and announces successful completion of parsing.
2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next

input symbol.
3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M. This

entry will either be an X-production of the grammar or an error entry.

If M[X , a] = {X → UVW},the parser replaces X on top of the stack by

WVU. If M[X , a] = error, the parser calls an error recovery routine.

Algorithm for nonrecursive predictive parsing:

Input : A string w and a parsing table M for grammar G.

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in

the input buffer. The program that utilizes the predictive parsing table M to produce a parse for

the input is as follows:

set ip to point to the first symbol of w$;

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

22

2020 - 2021 Jeppiaar Institute of Technology

repeat
let X be the top stack symbol and a the symbol pointed to by ip;

if X is a terminal or $ then
if X = a then

pop X from the stack and advance ip

else error()
else /* X is a non-terminal */

if M[X, a] = X →Y1Y2 … Yk then begin

CS8602-Compiler Design Department of CSE

23

2020 - 2021 Jeppiaar Institute of Technology

 pop X from the stack;

 push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top;

 output the production X → Y1 Y2 . . . Yk

 end

until X = $

else error()

/* stack is empty */

Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar G :

1. FIRST

2. FOLLOW

Rules for first():

1. If X is terminal, then FIRST(X) is {X}.

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non- terminal and X → aα is a production then add a to FIRST(X).

4. If X is non- terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some

i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε

is in FIRST(Y j) for all j=1,2,..,k, then add ε to FIRST(X).

Rules for follow():

1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in

follow(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

Algorithm for construction of predictive parsing table:

Input : Grammar G

Output : Parsing table M

Method :

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

24

2020 - 2021 Jeppiaar Institute of Technology

1. For each production A →α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(α), add A → α to M[A, a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].

4. Make each undefined entry of M be error.

CS8602-Compiler Design Department of CSE

25

2020 - 2021 Jeppiaar Institute of Technology

Example:

Consider the following grammar :

E → E+T |T
T → T*F |F
F→ (E) |id

After eliminating left-recursion the grammar is

E → TE’
E’ → +TE’ |ε
T → FT’
T’ → *FT’ | ε
F → (E) |id

First() :

FIRST(E) ={ (, id}

FIRST(E’) ={+ , ε }

FIRST(T) = { (, id}

FIRST(T’) ={*, ε }

FIRST(F) ={ (, id }

Follow():

FOLLOW(E) ={ $,) }

FOLLOW(E’) ={ $,) }

FOLLOW(T) ={ +, $,) }

FOLLOW(T’) = { +, $,) }

FOLLOW(F) ={+, * , $,) }

 Predictive parsing table :

NON- id + * () $

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

26

2020 - 2021 Jeppiaar Institute of Technology

 TERMINAL

 E E → TE’ E → TE’

 E’ E’ → +TE’ E’ → ε E’→ ε

 T T → FT’ T → FT’

 T’ T’→ ε T’→ *FT’ T’ → ε T’ → ε

 F F→ id F→ (E)

CS8602-Compiler Design Department of CSE

27

2020 - 2021 Jeppiaar Institute of Technology

 Stack implementation:

stack

Input Output

 $E id+id*id $

 $E’T id+id*id $ E → TE’

 $E’T’F id+id*id $ T → FT’

 $E’T’id id+id*id $ F→ id

 $E’T’ +id*id $

 $E’ +id*id $ T’ → ε

 $E’T+ +id*id $ E’ → +TE’

 $E’T id*id $

 $E’T’F id*id $ T → FT’

 $E’T’id id*id $ F→ id

 $E’T’ *id $

 $E’T’F* *id $ T’ → *FT’

 $E’T’F id $

 $E’T’id id $ F→ id

 $E’T’ $

 $E’ $ T’ → ε

 $ $ E’ → ε

LL(1) grammar :

The parsing table entries are single entries. So each location has not more than one entry. This

type of grammar is called LL(1) grammar.

Consider this following grammar:

S → iEtS | iEtSeS | a
E → b

After eliminating left factoring, we have

S → iEtSS’ |a
S’→ eS | ε
E → b

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

28

2020 - 2021 Jeppiaar Institute of Technology

To construct a parsing table, we need FIRST()and FOLLOW() for all the non-terminals.

FIRST(S) ={ i, a }

FIRST(S’) = {e, ε }

FIRST(E) ={ b}

FOLLOW(S) ={ $,e }

CS8602-Compiler Design Department of CSE

29

2020 - 2021 Jeppiaar Institute of Technology

FOLLOW(S’) = { $,e }

FOLLOW(E) = {t}

Parsing table:

NON- a b e i t $

TERMINAL

S S → a S → iEtSS’

S’ S’→ eS S’→ ε

 S’→ ε

E E → b

Since there are more than one production, the grammar is not LL(1) grammar.

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.
2. Construct FIRST() and FOLLOW() for all non-terminals.
3. Construct predictive parsing table.
4. Parse the given input string using stack and parsing table.

BOTTOM-UP PARSING

Constructing a parse tree for an input string beginning at the leaves and going towards the root is

called bottom-up parsing.

A general type of bottom-up parser is a shift-reduce parser. Other type is called LR Parser.

SHIFT-REDUCE PARSING

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree

for an input string beginning at the leaves (the bottom) and working up towards the root (the

top).

Example:
Consider the grammar:
S → aABe
A → Abc | b
B→ d
The sentence to be recognized is abbcde.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

30

2020 - 2021 Jeppiaar Institute of Technology

Reduction (leftmost) Rightmost derivation

abbcde (A → b) S → aABe

aAbcde (A → Abc) → aAde

aAde (B → d) → aAbcde

aABe (S → aABe) → abbcde

S
The reductions trace out the right-most derivation in reverse.

Handles:

A handle of a string is a substring that matches the right side of a production, and whose

reduction to the non-terminal on the left side of the production represents one step along the

reverse of a rightmost derivation.

Example:

Consider the grammar:

E → E+E
E → E*E
E → (E)
E → id

And the input string id1+id2*id3

The rightmost derivation is :

E → E+E

→ E+E*E
→ E+E*id3
→ E+id2*id 3
→ id1+id2*id 3

In the above derivation the underlined substrings are called handles.

Handle pruning:

A rightmost derivation in reverse can be obtained by “handle pruning”.

(i.e.) if w is a sentence or string of the grammar at hand, then w = γn, where γn is the n
th

 right-

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

31

2020 - 2021 Jeppiaar Institute of Technology

sentinel form of some rightmost derivation.

Stack implementation of shift-reduce parsing :

 Stack Input Action

 $ id1+id2*id3 $ shift

 $ id1 +id2*id3 $ reduce by E→id

 $ E +id2*id3 $ shift

 $ E+ id2*id3 $ shift

 $ E+id2 *id3 $ reduce by E→id

 $ E+E *id3 $ shift

 $ E+E* id3 $ shift

$ E+E*id3

 $

 reduce by E→id

 $ E+E*E $ reduce by E→ E *E

 $ E+E $ reduce by E→ E+E

 $ E $ accept

Actions in shift -reduce parser:

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design

Department of CSE

32

2020 - 2021

Jeppiaar Institute of Technology

 shift – The next input symbol is shifted onto the top of the stack.
 reduce – The parser replaces the handle within a stack with a

non-terminal.
 accept – The parser announces successful completion of parsing.
 error – The parser discovers that a syntax error has occurred and

calls an error recovery routine.

Conflicts in shift-reduce parsing:

There are two conflicts that occur in shift shift-reduce parsing:

1. Shift-reduce conflict: The parser cannot decide whether to shift

or to reduce.

2. Reduce-reduce conflict: The parser cannot decide which of

several reductions to make.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

33

2020 - 2021 Jeppiaar Institute of Technology

Viable prefixes:
 α is a viable prefix of the grammar if there is w such that αw is a right sentinel form.

 The set of prefixes of right sentinel forms that can appear on the stack of a shift-reduce parser

are called viable prefixes.

 The set of viable prefixes is a regular language.

LR PARSERS
An efficient bottom-up syntax analysis technique that can be used to parse a large class of

CFG is called LR(k) parsing. The ‘L’ is for left-to-right scanning of the input, the ‘R’ for

constructing a rightmost derivation in reverse, and the ‘k’ for the number of input symbols.

When ‘k’ is omitted, it is assumed to be 1.

Advantages of LR parsing:
 It recognizes virtually all programming language constructs for which CFG can be

written.

 It is an efficient non-backtracking shift-reduce parsing method.

 A grammar that can be parsed using LR method is a proper superset of a grammar that

can be parsed with predictive parser.

 It detects asyntactic error as soon as possible.

Drawbacks of LR method:
It is too much of work to construct a LR parser by hand for a programming language

grammar. A specialized tool, called a LR parser generator, is needed. Example: YACC.

Types of LR parsing method:
1. SLR- Simple LR

 Easiest to implement, least powerful.

2. CLR- Canonical LR
 Most powerful, most expensive.

3. LALR- Look -Ahead LR
 Intermediate in size and cost between the other two methods.

The LR parsing algorithm:

The schematic form of an LR parser is as follows:

INPUT
a1 …

ai …

an $

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

34

2020 - 2021 Jeppiaar Institute of Technology

Sm LR parsing program OUTPUT

Xm

Sm-1

Xm-1

… action goto

S0

STACK

CS8602-Compiler Design Department of CSE

35

2020 - 2021 Jeppiaar Institute of Technology

It consists of : an input, an output, a stack, a driver program, and a parsing table that has two

parts (action and goto).

 The driver program is the same for all LR parser.

 The parsing program reads characters from an input buffer one at a time.

 The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on top.

Each Xi is a grammar symbol and each si is a state.

 The parsing table consists of two parts : action and goto functions.

Action : The parsing program determines sm, the state currently on top of stack, and ai, the

current input symbol. It then consults action[sm,ai] in the action table which can have one of four

values :

1. shift s, where s is a state,
2. reduce by a grammar production A → β,
3. accept, and
4. error.

Goto : The function goto takes a state and grammar symbol as arguments and produces a state.

LR Parsing algorithm:

Input: An input string w and an LR parsing table with functions action and goto for grammar G.

Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error indication.

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in the input

buffer. The parser then executes the following program :

set ip to point to the first input symbol of

w$; repeat forever begin

 let s be the state on top of the stack

and a the symbol pointed to by ip;
if action[s, a] =shift s’ then begin push

a then s’ on top of the stack;

advance ip to the next input symbol

end
else if action[s, a]=reduce A→β then begin

pop 2* |β |symbols off the stack;
let s’ be the state now on top of the stack;

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

36

2020 - 2021 Jeppiaar Institute of Technology

push A then goto[s’, A] on top of the

stack; output the production A→ β

end
else if action[s, a]=accept then

return
else error()

end

CS8602-Compiler Design Department of CSE

37

2020 - 2021 Jeppiaar Institute of Technology

CONSTRUCTING SLR(1) PARSING TABLE:

To perform SLR parsing, take grammar as input and do the following:
1. Find LR(0) items.
2. Completing the closure.
3. Compute goto(I,X), where, I is set of items and X is grammar symbol.

LR(0) items:
An LR(0) item of a grammar G is a production of G with a dot at some position of the

right side. For example, production A → XYZ yields the four items :

A → . XYZ
A → X . YZ
A → XY . Z
A → XYZ .

Closure operation:

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from

I by the two rules:

1. Initially, every item in I is added to closure(I).
2. If A → α . Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if it is

not already there. We apply this rule until no more new items can be added to closure(I).

Goto operation:

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such

that [A→ α . Xβ] is in I.

Steps to construct SLR parsing table for grammar G are:

1. Augment G and produce G’
2. Construct the canonical collection of set of items C for G’
3. Construct the parsing action function action and goto using the following algorithm that

requires FOLLOW(A) for each non-terminal of grammar.

Algorithmfor construction of SLR parsing table:

Input : An augmented grammar G’
Output : The SLR parsing table functions action and goto for G’
Method :

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

38

2020 - 2021 Jeppiaar Institute of Technology

1. Construct C ={I0, I1, …. In}, the collection of sets of LR(0) items for G’.
2. State i is constructed from Ii.. The parsing functions for state i are determined as follows:

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be

terminal.
(b) If[A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a in FOLLOW(A).
(c) If [S’→S.] is in Ii, then set action[i,$] to “accept”.

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).

CS8602-Compiler Design Department of CSE

39

2020 - 2021 Jeppiaar Institute of Technology

3. The goto transitions for state i are constructed for all non-terminals A using the rule: If

goto(Ii,A)= Ij, then goto[i,A] = j.
4. All entries not defined by rules (2) and (3) are made “error”
5. The initial state of the parser is the one constructed from the set of items containing

[S’→.S].

Example for SLR parsing:
Construct SLR parsing for the following grammar :
G : E → E + T | T

T → T * F | F
F→ (E) | id

The given grammar is :
G : E → E + T ------ (1)

E →T ------ (2)

T → T * F ------ (3)

T → F ------ (4)

F→ (E) ------ (5)

F→ id ------ (6)

Step 1 : Convert given grammar into augmented grammar.
Augmented grammar :

E’ → E
E → E + T
E → T
T → T * F
T → F
F→ (E)
F→ id

Step 2 : Find LR (0) items.

I0 : E’ → . E
E → . E + T
E → . T
T → . T * F
T → . F

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

40

2020 - 2021 Jeppiaar Institute of Technology

F → . (E)
F → . id

GOTO (I0 , E) GOTO (I4 , id)

I1 : E’ → E . I5 : F→ id .

E → E . + T

CS8602-Compiler Design

Department of CSE

41

2020 - 2021 Jeppiaar

Institute of Technology

GOTO (I0 , T)
I2 : E → T .

T → T . * F

GOTO (I0 , F)
I3 : T → F .

GOTO (I0 , ()
I4 : F → (. E)

E → . E + T
E → . T
T → . T * F
T → . F
F → . (E)
F → . id

GOTO (I0 , id)
I5 : F→ id .

GOTO (I1 , +)
I6 : E → E + . T

T → . T * F

T → . F
F → . (E)

F → . id

GOTO (I2 , *)
I7 : T → T * . F

F → . (E)

F → . id

GOTO (I4 , E)

I8 : F→ (E .) E → E . + T

GOTO (I4 , T)
I2 : E →T .

T → T . * F

GOTO (I4 , F)
I3 : T → F .

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design

Department of CSE

42

2020 - 2021 Jeppiaar

Institute of Technology

G

O

T

O

(

I
6

,

T

)
I
9

:

E

→

E

+

T

.
T

→

T

.

*

 F

GOTO (I6 , F)
I3 : T → F .

GOTO (I6 , ()
I4 : F→ (. E)

GOTO (I6 , id)
I5 : F→ id .

GOTO (I7 , F)
I10 : T → T * F .

 GOTO (I7 , ()
 I4 : F→ (. E)

 E → . E + T
 E → . T
 T → . T * F
 T → . F
 F → . (E)
 F → . id

 GOTO (I7 , id)
 I5 : F → id .

 GOTO (I8 ,))
 I11 : F→ (E) .

GOTO (I8 , +)
I6 : E → E + . T

T → . T * F
T → . F
F→ . (E)
F→ . id

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design

Department of CSE

43

2020 - 2021 Jeppiaar

Institute of Technology

G

O

T

O

(

I
9

,

*

)
I7 : T → T * .

F
F→ . (E)

F

→

.

i

d

CS8602-Compiler Design Department of CSE

44

2020 - 2021 Jeppiaar Institute of Technology

GOTO (I4 , ()
I4 : F → (. E)

E → . E + T
E → . T
T → . T * F
T → . F
F → . (E)
F → id

FOLLOW (E) = { $,) , +)
FOLLOW (T) = { $, + ,) , * }
FOOLOW (F) = { * , + ,) , $ }

SLR parsing table:

 ACTION GOTO

 id + * () $

 E T F

I0 s5 s4 1 2 3

I1 s6 ACC

I2 r2 s7 r2 r2

I3 r4 r4 r4 r4

I4 s5 s4 8 2 3

I5 r6 r6 r6 r6

I6 s5 s4 9 3

I7 s5 s4 10

I8 s6 s11

I9 r1 s7 r1 r1

I10 r3 r3 r3 r3

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design Department of CSE

45

2020 - 2021 Jeppiaar Institute of Technology

I11 r5 r5 r5 r5

Blank entries are error entries.

Stack implementation:

Check whether the input id + id * id is valid or not.

CS8602-Compiler Design

Department of CSE

46

2020 - 2021 Jeppiaar Institute of

Technology

STACK

0

0 id 5

0 F 3

0 T 2

0 E 1

0 E 1 + 6

0 E 1 + 6 id 5

0 E 1 + 6 F 3

INPUT

id + id * id $

+ id * id $

+ id * id $

+ id * id $

+ id * id $

id * id $

 * id $

 * id $

ACTION

GOTO (I0 , id) = s5 ; shift

GOTO (I5 , +) = r6 ; reduce by F→id

GOTO (I0 , F) = 3
GOTO (I3 , +) = r4 ; reduce by T → F

GOTO (I0 , T) = 2
GOTO (I2 , +) = r2 ; reduce by E → T

GOTO (I0 , E) = 1
GOTO (I1 , +) = s6 ; shift

GOTO (I6 , id) = s5 ; shift

 GOTO (I5 , *) = r6 ; reduce by F→ id

 GOTO (I6 , F) = 3
 GOTO (I3 , *) = r4 ; reduce by T → F

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CS8602-Compiler Design

Department of CSE

47

2020 - 2021 Jeppiaar Institute of

Technology

 0 E 1 + 6 T 9 * id $ GOTO (I6 , T) = 9

 GOTO (I9 , *) = s7 ; shift

 0 E 1 + 6 T 9 * 7 id $ GOTO (I7 , id) = s5 ; shift

 0 E 1

+ 6 T 9 * 7

id 5 $ GOTO (I5 , $) = r6 ; reduce by F→ id

 0 E 1

+ 6 T 9 * 7

F 10 $ GOTO (I7 , F) = 10

 GOTO (I10 , $) = r3 ; reduce by T → T * F

 0 E 1 + 6 T 9 $ GOTO (I6 , T) = 9

 GOTO (I9 , $) = r1 ; reduce by E → E + T

 0 E 1 $ GOTO (I0 , E) = 1

 GOTO (I1 , $) = accept

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

48

CANONICAL LR PARSING:

Example:

S CC
C cC|d.

1. Number the grammar productions:

1. S CC

2. C cC

3. C d

2. The Augmented grammar is:

SI
S

S CC

C cC

C d.

3.Constructing the sets of LR(1) items:

We begin with:

Sl .S,$ begin with look-a-head (LAH) as $. Here after with the help of closure other items are

added.

Closure():

For the production A->α.Ba ,Function closure tells us to add [B.r,b] for each production Br and

terminal b in FIRST (a). Now r must be SCC, and since is and a is $, b may only be $.

Thus,

 S.CC,$

We continue to compute the closure by adding all items [C.r,b] for b in FIRST [C$] i.e., matching

[S.CC,$] against [A.B,a] we have, A=S, =, B=C and a=$. FIRST (C$) = FIRST ©

FIRST© = {c,d} We add items:

C.cC,C

CcC,d

C.d,c

49

C.d,d

None of the new items have a non-terminal immediately to the right of the dot, so we have completed

our first set of LR(1) items. The initial I0 items are:

I0 : S
I
.S,$ S.CC,$ C.CC,c/d C.d.c/d

Now we start computing goto (I0,X) for various non-terminals i.e.,

Goto (I0,S):

I1 : S
I
S.,$ reduced item.

Goto (I0,C)

I2 : SC.C, $

C.cC,$

C.d,$

Goto (I0,c) :

I3 : Cc.C,c/d

C.cC,c/d

 C.d,c/d

Goto (I0,d)

I4 Cd., c/d reduced item.

Goto (I2,C)

 I5 SCC.,$ reduced item.

Goto (I2,c)

50

 I6

Cc.C,$

 C.cC,$

 C.d,$

Goto (I2,d)

 I7 Cd.,$ reduced item.

Goto (I3,C)

 I8 CcC.,c/d reduced item.

Goto (I3,c) I3

 Cc.C, c/d

 C.cC,c/d

C.d,c/d

Goto (I3,d) I4

 Cd.,c/d. reduced item.

Goto (I6,C)

 I9 CcC.,$ reduced item.

Goto (I6,c) I6

 Cc.C,$

 C,cC,$

 C.d,$

Goto (I6,d) I7

Cd.,$ reduced item.

All are completely reduced. So now we construct the canonical LR (1) parsing table –

Here there is no need to find FOLLOW () set, as we have already taken look-a-head for

each set of productions while constructing the states.

Constructing LR(1) Parsing table:

 Action goto

State C D $ S C

0 S3 S4 1 2

51

1 Accept

2 S6 S7 5

3 S3 S4 8

4 R4 R4

5 R1

6 S6 S7 9

7 R4

8 R3 R3

9 R3

1. Consider I0 items:

The item S.S.$ gives rise to goto [I0,S] = I1 so goto [0,s] = 1.

The item S.CC, $ gives rise to goto [I0,C] = I2 so goto [0,C] = 2.

The item C.cC, c/d gives rise to goto [I0,c] = I3 so goto [0,c] = shift 3

The item C.d, c/d gives rise to goto [I0,d] = I4 so goto [0,d] = shift 4

2. Consider I0 items:

The item S
I
S.,$ is in I1, then set action [1,$] = accept

3. Consider I2 items:

The item SC.C,$ gives rise to goto [I2,C] = I5. so goto [2,C] = 5

The item C.cC, $ gives rise to goto [I2,c] = I6. so action [0,c] = shift 6. The item C.d,$ gives

rise to goto [I2,d] = I7. so action [2,d] = shift 7

4. Consider I3 items:

The item C.cC, c/d gives rise to goto [I3,C] = I8. so goto [3,C] = 8

The item C.cC, c/d gives rise to goto [I3,c] = I3. so action [3,c] = shift 3. The item C.d, c/d

gives rise to goto [I3,d] = I4. so action [3,d] = shift 4.

5. Consider I4 items:

The item C.d, c/d is the reduced item, it is in I4 so set action [4,c/d] to reduce cd.

(production rule no.3)

6. Consider I5 items:

52

The item SCC.,$ is the reduced item, it is in I5 so set action [5,$] to SCC (production rule no.1)

7. Consider I6 items:

The item Cc.C,$ gives rise to goto [I6 ,C] = I9. so goto [6,C] = 9

The item C.cC,$ gives rise to goto [I6 ,c] = I6. so action [6,c] = shift 6

The item C.d,$ gives rise to goto [I6 ,d] = I7. so action [6,d] = shift 7

8. Consider I7 items:
The item Cd., $ is the reduced item, it is in I7.

So set action [7,$] to reduce Cd (production no.3)

9. Consider I8 items:

The item CcC.,c/d in the reduced item, It is in I8, so set action[8,c/d] to reduce CcC

(production rule no .2)

10. Consider I9 items:

The item C cC, $ is the reduced item, It is in I9, so set action [9,$] to reduce CcC

(Production rule no.3)

If the Parsing action table has no multiply –defined entries, then the given grammar is called as

LR(1) grammar

LALR PARSING:

Example:

1. Construct C={I0,I1,… ,In} The collection of sets of LR(1) items

2. For each core present among the set of LR (1) items, find all sets having that core, and

replace there sets by their Union# (group them into a single term)

I0 same as previous

I1 “

I2 “

I36 –> Clubbing item I3 and I6 into one I36 item.

53

C cC,c/d/$

CcC,c/d/$

 Cd,c/d/$

I5 same as previous

I47-> Clubbing item I4 and I7 into one I47 item

Cd,c/d/$

 I89 Clubbing item I8 and I9 into one I89 item

 CcC, c/d/$

LALR parsing table construction:

State
Action Goto

c d C

Io S36 S47 2

1 Accept

2 S36 S47 5

36 S36 S47 89

47 r3 r3

5 r1

89 r2 r2 r2

54

55

	CANONICAL LR PARSING:
	1. Number the grammar productions:
	2. The Augmented grammar is:
	1. Consider I0 items:
	2. Consider I0 items:
	3. Consider I2 items:
	4. Consider I3 items:
	5. Consider I4 items:
	6. Consider I5 items:
	7. Consider I6 items:
	8. Consider I7 items:
	9. Consider I8 items:
	10. Consider I9 items:
	LALR PARSING:
	LALR parsing table construction:

